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Information Theory: the W

Physics of Coding

= We have studied various coding methods and
compared them in terms of performance, complexity
and optimizability

= What are the theoretical limits for the performance
of coding systems?

= How do code rate, error probability and the required
block length evolve in function of the channel
characteristics?

= How good are turbo, LDPC and RA codes really?
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Information Theory: the W

Physics of Coding

= We studied this for the Binary Erasure Channel with
erasure probability § in Lecture 1 and concluded the
following:

- for rates R> 1 - §, the error probability is lower
bounded, no matter how good the coding (genie)

- for rates R < 1 - §, the error probability can be made
arbitrarily small by random linear coding of increasing
block length N, decoding by matrix inversion

= 1-3is the “"capacity” of the BEC

= There is no rate-reliability fradeoff for rates below
capacity!
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Information Theory: the W

Physics of Coding

= Irregular LDPC codes can be optimized so that the
threshold for iterative decoding is arbitrarily close to the
capacity of the BEC

= This lecture: study the information theory of general
discrete memoryless channels

= Next lectures: study the design of turbo, LDPC and RA
codes to approach the capacity of general memoryless
channels
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This lecture is a
summary of 9 two-
hour lectures from
Jim Massey's Applied
Digital Information
Theory I (ADIT I)
course at ETH Zirich

(with very minor changes)
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Notes available at
http://www.isi.ee.ethz. ch/education/public/free_docs.en.html
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Discrete Probability Theory M

= Let Q be the set of possible outcomes of a random
experiment

= An event is any subset of O

= A probability measure P assigns real number between
0 and 1 to events, such that P(0) = 0, P(Q2) = 1 and for
A and B C Q, P(AUB) = P(A) + P(B)

= Events, and only events can have probabilities!

= A random variable is a mapping from Q to a finite or
countably finite set of real numbers
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Notation M

= random variable: X (UPPER CASE)
= value of a random variable: x (lower case)
= Py(x) is short for Prob(X = x)

(X=x defines an event!)

= Py is the discrete probability distribution of X, i.e.,
Py(x)> 0 forall x, and >, Py(x) =1

= Pyy is the joint probability distribution of X and Y,
i.e., the probability distribution of the vector-valued
random variable [X,Y]

= allowed abuse of notation: P(x) means Py(x)
= forbidden abuse of notation: P(1), or P(a) for Py(a)

© ftw. 2004

Entropy / Uncertainty M

How many b-ary symbols are needed to identify
the value of an L-ary random variable X?

Hartley's measure of information:

I(X) = log, L

Example: L=4,b=2,I(X)=2
L=8,I(X)=3
L=6,I(X)=258

R.V.L. Hartley, "Transmission of Information®, Bell
Syst. Tech. J., Vol. 3, July 1928, pp. 535 - 564)
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Entropy / Uncertainty M

What if the values of X are not equally probable,
i.e., X is not uniformly distributed?

Shannon's measure of information:
H(Py) = -2, Px(x) logy, Px(x)

(convention: O log 0 = 0)

Units: b=2, "bits" Claude E. Shannon, "A Mathematical
b = e, "nats” Theory of Communication”, Bell System
b = 10, "Hartley" Tech. Journal, Vol. 27, July and
October 1948, pp. 379 - 423 and pp.
623 - 656)
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Entropy/Uncertainty M

= H(Py) is the entropy of the probability
distribution of X

= The word "entropy” is used because of the
similarity between the formula for H and the
entropy in physics

= H(Py) is a measure for our uncertainty about
the value of X

= Alternatively, we write H(X) for H(Py)

= Keep in mind that H(.) is always a function of
a probability distribution!
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Entropy/Uncertainty m

Examples:

L = 3,Py(0) = 5, Py(1) = .25, Py(2) = .25
H(X) = 5 log, 2 + .25 log, 4 + .25 log, 4

= 1.5 bit
L = 2, Py(0) = Py(1) = 1/2
H(X) = 1 bit
L=2,Py(0)=1,Py(1)= 0
H(X) = O bit
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Binary Entropy Function m

L =2,Px(0)=p, Px(1) = 1-p

H(X) - h(p) 1 ! !The Ig:)inarly eni‘rrop?/ fun!c‘rio?
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Entropy Bounds M

For an L-ary random variable X,

with equality on the right when Py(x) = 1/L for all x,
with equality on the left when Py(x) = 1 for one x
and P(X) = O for all other x.

Quiz: can you give an upper bound for the
entropy of the set of all books in print?
(independent of the choice of probability

measure)
Answer: 10 Hartleys

Why? = ISBN number!
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Quiz i

= What is H(XY)?

Answer: H(XY) = H(Pyy)
=2 Zy Pyxy(X.y) logy, Pyy(x.y)

= What about H(le:y)‘) Warning: only defined

if Py(y)>0
Answer: H(X|Y=y) = H(Pyy-,)
=2 PXlY:y(X) logy, PXIY=Y(X)

Both H(Pyy) and H(Pyy-,) are just plain entropies
of probability distributions!
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Equivocation M

The equivocation, or average conditional entropy,
of X given Y is defined as

H(X[Y) = Zy Py(y) H(Px|y=y)
Warning: do not confuse with H(X|Y=y) = H(Pyy-,)

H(X|Y=y) is an entropy conditioned on an event,
whereas the equivocation H(X|Y) is an “entropy”
conditioned on a random variable

In reality, H(X|Y) is not an entropy at all but an
average entropy. It is a function of Pyy!

© ftw. 2004

Equivocation M

H(X|Y) = =) Py(y) ) Pxy=y(@)logyPx|y=y(z)
y x

Py (y)

Pxy(x,y)
= - Pxy (xz,y)log
zm: zy: P Pxy (@, y)

PXY(way)
= = > Pxy(z,ylogy—1—~—
Ty
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Properties of the equivocation M

"Conditioning can only reduce entropy”
0 < H(X|Y) < H(X)

equality on the left if Y essentially determines X
equality on the right if X and Y are independent

Warning: H(X|Y=y) can be larger than H(X)!!
"Conditioning on events can increase entropy”

Chain rule: H(XY) = H(Y) + H(XY)

H(XlxN) = H(Xl) + H(X2|X1) + ..t H(Xlel"'XN-l)
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Example M

Random experiment: pick a student uniformly at
random in class

r.v. X sex of student (O male, 1 female)
rv. Y row number where student is sitting

For some rows, H(X|Y=y) > H(X)
but H(X|Y) < H(X)

© ftw. 2004




Mutual Information

1.

The mutual information between X and Y is

I(X:Y) = H(X) - H(X[Y)
= H(Y) - H(YIX)

0 < I(XY) < min[HX) H(Y)]

equality on left if X and Y independent
equality on right if X essentially determines Y
or vice-versa

I(X:Y) is a function of the joint distribution P,y
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Mutual Information

I(X; Y) = — ZP)((CC) |OngX($)

1o,

— H(X|Y)

= —ZZPXY |OngX(a7) _H(le)
r y

= —> > Pxy(z,y)log,
Ty

Pxy (z,y)

Px (x) Py (y)

where Py(x) = X, Pyy(x'.y)
and Py(y) = Zy-ny(X,Y')
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Mutual Information M

Conditioning:
I(X:Y|Z=z) = H(X|Z=2) - H(X|Y ,Z=2)
ICXGYIZ) = HIXIZ) - H(X|YZ)

Chain rule:
IOGCYZ) = IOCY) + IOKZLY)
IOGCYYN) = TOGY ) + IOCY, YY) + ..
L IOCYNIY Y )

Warning: I(X;Y|Z) can be smaller or larger
than I(X,\/) (as Ralf and T found recently to our surprise...)
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The essence of Mutual Information M

= I(X:Y) tells us how much uncertainty is
reduced about X by knowing Y (or vice-versa)

= I(X:Y) tells us how much information X gives
about Y (or vice-versa)

= I(X:Y) is a very general type of correlation
measure: it is O when X and Y are independent
(and thus uncorrelated) and maximized when
X is a function of ¥ or vice-versa

© ftw. 2004
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Communication Model

Source

1o,

Destination

Transmitter — ]

Physical
Channel
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Receiver

Communication Model

1o,

Source Gl Modulation &
9 Signal Processing
Physical
Channel
Destination Decoding Signal Processing

& Demodulation

© ftw. 2004

12



Communication Model

Source

Coding

Destination

Decoding

1o,

Communication
Channel

From a coding engineer’s perspective, the
channel is everything in a communication system

that we are unwilling/unable/not allowed to modify
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Communication Model

Source Source Channel

Coding Coding

. Source Channel
DL Decoding| |Decoding
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Communication Model

Binary

Symmeftric
Source

1o,

Destination

Channel
Coding }
Channel
Channel |
Decoding

Remark: our coding systems are designed for binary-input memoryless
channels (possibly continuous output) but in this lecture, we will only

consider discrete (possibly non-binary) channels
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Communication Model

1o,
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Source
Discrete
Memoryless
Channel
o Channel |
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Data Processing Theorem M

Let X, VY, Z form a Markov Chain, i.e.,
IX.ZIY)=0
or H(X|YZ) = H(X|Y) or H(Z|XY) = H(Z]Y)

I(X;Y) > I(X;Z) and I(Y;Z) > I(X.Z2)
Information cannot be increased by processing!

When "=" in the left inequality, we say that Z is a
sufficient statistic for X and then X, Z, Y also
form a Markov Chain (but not necessarily ¥, X,Z...)

Y
X —{ "Processor" 1 "Processor" 2 — Z

© ftw. 2004

Data Processing Lemma M

Interesting fact:

Xl)i\], Y1YN MAP Ef L(XllylyN)

Calculator
BCJR, no hard decision!

DMC

I(X,,ylyN) = I(X,,Z,)
Z; is a sufficient statistic for X,

© ftw. 2004
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Data Processing Theorem M

U;..Ug Channel X1.. Xn
28 Coding }
DMC
Destination f—— DC han;.el |
0,.0, ecoding A

Consequence: I(X;..X\:Y;..Yy) > I(U,..U:0,..0))
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Data Processing Lemma M

We have o
H(UIUK|U1UK) = Zi H(UilUl...UKUl...Ui_l)
(chain rule) R
< 2 H(UU)

(conditioning reduces entropy)

We also haveA ) o
H(UIUK|U1UK) = H(U]_UK) - I(UIUK'UIUK)
where H(U,;..U,) = K bits
(BSS)

Therefore
H(UIUK|U1UK) 2 K - I(XIXN,ylxN)

(data processing lemma)

© ftw. 2004
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Data Processing Lemma M

Therefore o
Zi H(U,|U|) 2 H(U1UK|U1UK) Z K - I(XIXN’ylyN)

Furthermore,
HY .Y X X)) = 25 HEY X))
(DMC)

and H(Y,..Y\) = Zi HY YY) < 2 HEY)Y),

(chain rule) (conditioning reduces entropy)

therefore T(X,..X\;Y1..YN) < X I(X.Y)

Yo HUHO) > K- 2y I0GY)
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Converse coding theorem M

We define the error probabilities P,; = PO, = U,)
and Pe = I/K Zi=1...K Pei

The optimal symbol decoder will choose {;
according to the maximum of P(U;|observations).
Therefore, P(U; = 0|U; = 1) = P(U; = 1{U; = 0) = P,
and P(U,=0|U,=0)=PU,=1|U,=1)=1-P,

We conclude that )
H(U;|U)) < h(P.)
with equality for the optimal decoder

This is known as Fano's inequality
(given here only for the binary case)

© ftw. 2004
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Converse coding theorem M

We now wr'iTeA
Y HWU) < X h(P,)

(Fano's inequality)
<K h(l/K Z; Pei) =K h(Pe)

(convexity of h(.))

We obtain: h(P,) > 1-1/K % I(X.Y})

I(X.Y)) is a function of Pyy. The conditional
distribution Py, is given by the channel.
Therefore, we can choose Py, to maximize I(X;Y;)
for any given channel to minimize the error
probability.
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Converse coding theorem M

Let us define

C-= maxp, I(X,Y)
C is called the capacity of the discrete
memoryless channel

Converse coding theorem: if R> C,

P,>h1(1-C/R)
(Shannon, 1948)

© ftw. 2004
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Capacity m

= ofaBEC:C=1-5
= of aBSC: C=1-h(e)

= of a general binary-input symmetric channel:

C - 1 - H(PY|X:O)
© ftw. 2004
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