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Information Theory: the
Physics of Coding

We have studied various coding methods and 
compared them in terms of performance, complexity 
and optimizability

What are the theoretical limits for the performance 
of coding systems?

How do code rate, error probability and the required 
block length evolve in function of the channel
characteristics?

How good are turbo, LDPC and RA codes really?
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Information Theory: the
Physics of Coding

We studied this for the Binary Erasure Channel with 
erasure probability δ in Lecture 1 and concluded the 
following:

- for rates R > 1 - δ, the error probability is lower 
bounded, no matter how good the coding (genie)

- for rates R < 1 - δ, the error probability can be made 
arbitrarily small by random linear coding of increasing 
block length N, decoding by matrix inversion

1 -δ is the “capacity” of the BEC
There is no rate-reliability tradeoff for rates below 
capacity!
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Information Theory: the
Physics of Coding

Irregular LDPC codes can be optimized so that the 
threshold for iterative decoding is arbitrarily close to the 
capacity of the BEC

This lecture: study the information theory of general 
discrete memoryless channels

Next lectures: study the design of turbo, LDPC and RA 
codes to approach the capacity of general memoryless
channels
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Discrete Probability Theory

Let Ω be the set of possible outcomes of a random 
experiment
An event is any subset of Ω

A probability measure P assigns real number between 
0 and 1 to events, such that P(∅) = 0, P(Ω) = 1 and for 
A and B ⊂ Ω, P(AUB) = P(A) + P(B)
Events, and only events can have probabilities!

A random variable is a mapping from Ω to a finite or 
countably finite set of real numbers
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Notation

random variable: X                              (UPPER CASE)
value of a random variable: x (lower case)
PX(x) is short for Prob(X = x)
(X=x defines an event!)
PX is the discrete probability distribution of X, i.e., 
PX(x)≥ 0 for all x, and ∑x PX(x) = 1
PXY is the joint probability distribution of X and Y, 
i.e., the probability distribution of the vector-valued 
random variable [X,Y]

allowed abuse of notation: P(x) means PX(x)
forbidden abuse of notation: P(1), or P(a) for PX(a)
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Entropy / Uncertainty

How many b-ary symbols are needed to identify
the value of an L-ary random variable X?

Hartley’s measure of information: 

I(X) = logb L

R.V.L. Hartley, “Transmission of Information“, Bell 
Syst. Tech. J., Vol. 3, July 1928, pp. 535 - 564)

Example:  L = 4, b = 2, I(X) = 2
L = 8, I(X) = 3
L = 6, I(X) = 2.58
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Entropy / Uncertainty

What if the values of X are not equally probable,
i.e., X is not uniformly distributed?

Claude E. Shannon, “A Mathematical 
Theory of Communication”, Bell System 
Tech. Journal, Vol. 27, July and 
October 1948, pp. 379 - 423 and pp. 
623 - 656)

Units: b=2, “bits”
b = e, “nats”
b = 10, “Hartley”

Shannon’s measure of information: 
H(PX) = -∑x PX(x) logb PX(x)

(convention: 0 log 0 = 0)
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Entropy/Uncertainty

H(PX) is the entropy of the probability 
distribution of  X
The word “entropy” is used because of the 
similarity between the formula for H and the 
entropy in physics

H(PX) is a measure for our uncertainty about 
the value of X

Alternatively, we write H(X) for H(PX)
Keep in mind that H(.) is always a function of 
a probability distribution!
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Entropy/Uncertainty

Examples:

L = 3, PX(0) = .5, PX(1) = .25, PX(2) = .25

L = 2, PX(0) = PX(1) = 1/2

L = 2, PX(0) = 1, PX(1) = 0

H(X) = .5 log2 2 + .25 log2 4 + .25 log2 4
= 1.5 bit

H(X) = 1 bit

H(X) = 0 bit

© ftw. 2004

Binary Entropy Function

L = 2, PX(0) = p, PX(1) = 1-p

H(X) = h(p)

p

h(p)

The binary entropy function
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Entropy Bounds

For an L-ary random variable X, 
0 · H(X) · logb L

with equality on the right when PX(x) = 1/L for all x,
with equality on the left when PX(x) = 1 for one x
and P(X) = 0 for all other x.

Quiz: can you give an upper bound for the
entropy of the set of all books in print?
(independent of the choice of probability
measure)

Answer: 10 Hartleys
Why?  ISBN number!
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Quiz

What is H(XY)?

What about H(X|Y=y)?

Answer: H(XY) = H(PXY)
= ∑x ∑y PXY(x,y) logb PXY(x,y)

Answer: H(X|Y=y) = H(PX|Y=y)
= ∑x PX|Y=y(x) logb PX|Y=y(x)

Both H(PXY) and H(PX|Y=y) are just plain entropies
of probability distributions!

Warning: only defined
if PY(y) > 0
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Equivocation

The equivocation, or average conditional entropy,
of X given Y is defined as

H(X|Y) = ∑y PY(y) H(PX|Y=y)

Warning: do not confuse with H(X|Y=y) = H(PX|Y=y)

H(X|Y=y) is an entropy conditioned on an event,
whereas the equivocation H(X|Y) is an “entropy”
conditioned on a random variable

In reality, H(X|Y) is not an entropy at all but an 
average entropy. It is a function of PXY!
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Equivocation
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Properties of the equivocation

“Conditioning can only reduce entropy”

0 · H(X|Y) · H(X)

equality on the left if Y essentially determines X
equality on the right if X and Y are independent

Warning: H(X|Y=y) can be larger than H(X)!!
“Conditioning on events can increase entropy”

Chain rule: H(XY) = H(Y) + H(X|Y)

H(X1…XN) = H(X1) + H(X2|X1) + … + H(XN|X1…XN-1)
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Example

Random experiment: pick a student uniformly at 
random in class

r.v. X sex of student (0 male, 1 female)
r.v. Y row number where student is sitting

For some rows, H(X|Y=y) > H(X)

but H(X|Y) < H(X)
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Mutual Information

The mutual information between X and Y is

I(X;Y) = H(X) – H(X|Y)
= H(Y) – H(Y|X)

0 · I(X;Y) · min[H(X),H(Y)]

equality on left if X and Y independent
equality on right if X essentially determines Y

or vice-versa

I(X;Y) is a function of the joint distribution PXY
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Mutual Information

where PX(x) = ∑x'PXY(x',y)
and PY(y) = ∑y'PXY(x,y')
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Mutual Information

Conditioning:
I(X;Y|Z=z) = H(X|Z=z) – H(X|Y,Z=z)
I(X;Y|Z) = H(X|Z) – H(X|YZ)

Chain rule:
I(X;YZ) = I(X;Y) + I(X;Z|Y)
I(X;Y1…YN) = I(X;Y1) + I(X;Y2|Y1) + …

… + I(X;YN|Y1…YN-1) 

Warning: I(X;Y|Z) can be smaller or larger
than I(X;Y) (as Ralf and I found recently to our surprise…)
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The essence of Mutual Information

I(X;Y) tells us how much uncertainty is 
reduced about X by knowing Y (or vice-versa)

I(X;Y) tells us how much information X gives 
about Y (or vice-versa)

I(X;Y) is a very general type of correlation
measure: it is 0 when X and Y are independent 
(and thus uncorrelated) and maximized when 
X is a function of Y or vice-versa

Administrator
Highlight
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Communication Model

Transmitter

Physical
Channel

Destination

Source

Receiver
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Communication Model

Coding

Physical
Channel

Destination

Source Modulation &
Signal Processing

Signal Processing
& DemodulationDecoding
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Communication Model

Coding

Communication
Channel

Destination

Source

Decoding

From a coding engineer’s perspective, the 
channel is everything in a communication system
that we are unwilling/unable/not allowed to modify
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Communication Model

Channel
Coding

Channel

Destination

Source

Channel
Decoding

Source
Decoding

Source
Coding
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Communication Model

Channel
Coding

Channel

Binary
Symmetric

Source

Destination Channel
Decoding

Remark: our coding systems are designed for binary-input memoryless
channels (possibly continuous output) but in this lecture, we will only 
consider discrete (possibly non-binary) channels 
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Communication Model

Channel
Coding

Discrete
Memoryless

Channel

Binary
Symmetric

Source

Destination Channel
Decoding

U1…UK X1…XN

Y1…YNÛ1…ÛK
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Data Processing Theorem

“Processor” 1 “Processor” 2X
Y

Z

Let X, Y, Z form a Markov Chain, i.e., 
I(X;Z|Y) = 0

or H(X|YZ) = H(X|Y) or H(Z|XY) = H(Z|Y)

I(X;Y) ≥ I(X;Z) and I(Y;Z) ≥ I(X;Z)
Information cannot be increased by processing!

When “=“ in the left inequality, we say that Z is a 
sufficient statistic for X and then X, Z, Y also 
form a Markov Chain (but not necessarily Y,X,Z…)
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Data Processing Lemma

Interesting fact:

DMC MAP
Calculator

X1…XN Y1…YN Zi = L(Xi|Y1…YN)

I(Xi;Y1…YN) = I(Xi;Zi)
Zi is a sufficient statistic for Xi

BCJR, no hard decision!
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Data Processing Theorem

Channel
Coding

DMC

BSS

Channel
Decoding

U1…UK X1…XN

Y1…YNÛ1…ÛK

Destination

Consequence: I(X1…XN;Y1…YN) ≥ I(U1…UK;Û1…ÛK)
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Data Processing Lemma

We have
H(U1…UK|Û1…ÛK) = ∑i H(Ui|Û1…ÛKU1…Ui-1)

(chain rule)

· ∑i H(Ui|Ûi)
(conditioning reduces entropy)

We also have
H(U1…UK|Û1…ÛK) = H(U1…UK) - I(U1…UK;Û1…ÛK)

where H(U1…UK) = K bits
(BSS)

Therefore
H(U1…UK|Û1…ÛK) ≥ K – I(X1…XN;Y1…XN)

(data processing lemma)
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Data Processing Lemma
Therefore
∑i H(Ui|Ûi) ≥ H(U1…UK|Û1…ÛK) ≥ K – I(X1…XN;Y1…YN)

Furthermore,
H(Y1…YN|X1…XN) = ∑i H(Yi|Xi) 

(DMC)

and H(Y1…YN) = ∑i H(Yi|Y1…Yi-1) · ∑i H(Yi),  
(chain rule)              (conditioning reduces entropy)        

therefore I(X1…XN;Y1…YN) · ∑i I(Xi;Yi) 

∑i=1…K H(Ui|Ûi) ≥ K - ∑i=1…N I(Xi;Yi)
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Converse coding theorem

We define the error probabilities Pei = P(Ûi ≠ Ui)
and Pe = 1/K ∑i=1…K Pei

The optimal symbol decoder will choose ûi
according to the maximum of P(Ui|observations). 
Therefore, P(Ui = 0|Ûi = 1) = P(Ui = 1|Ûi = 0) = Pei
and P(Ui = 0|Ûi = 0) = P(Ui = 1|Ûi = 1) = 1 - Pei

We conclude that 
H(Ui|Ûi) · h(Pei)

with equality for the optimal decoder

This is known as Fano’s inequality
(given here only for the binary case)
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Converse coding theorem

We now write
∑i H(Ui|Ûi) · ∑i h(Pei)

(Fano’s inequality)
· K h(1/K ∑i Pei) = K h(Pe)

(convexity of h(.))

We obtain: h(Pe) ≥ 1 – 1/K ∑i I(Xi;Yi)

I(Xi;Yi) is a function of PXY. The conditional 
distribution PY|X is given by the channel. 
Therefore, we can choose PXi to maximize I(Xi;Yi) 
for any given channel to minimize the error 
probability.
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Converse coding theorem

Let us define
C = maxPx I(X;Y)

C is called the capacity of the discrete
memoryless channel

Converse coding theorem: if R > C, 

Pe > h-1(1 – C/R)
(Shannon, 1948)
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Capacity

of a BEC: C = 1 - δ

of a BSC: C = 1 – h(ε)

of a general binary-input symmetric channel:

C = 1 - H(PY|X=0) 
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