ETSI EP BRAN

Source: Jonas Medbo, Peter Schramm, Ericsson Radio Systems AB,

Title: Channel Models for HIPERLAN/2 in Different Indoor Scenarios

Х

Agenda Item:

Document for:	Decision		
	Discussion	Х	

Information

1 Introduction

This document contains a set of indoor channel models for which was decided, at BRAN#8, to be used for HIPERLAN/2 simulations. A tapped delay line type of model, which is basically described in [1], has been chosen. In order to reduce the number of taps needed, the time spacing is non uniform. For shorter delays, a more dense spacing is used. The average power declines exponentially with time. Except for the first tap, which can have a Ricean K factor of 10, all taps have Rayleigh fading statistics (K=0). A classical (Jake's) Doppler spectrum corresponding to a terminal speed of 3 m/s is assumed for all taps.

2 Models

Five models — A, B, C, D and E — have been designed. Model A corresponds to a typical office environment. Model B corresponds to a typical large open space environment with NLOS conditions or an office environment with large delay spread. Models C and E correspond to typical large open space indoor and outdoor environments with large delay spread. Model D corresponds LOS conditions in a large open space indoor or an outdoor environment.

Tap Number	Delay (ns)	Average Relative Power (dB)	Ricean K	Doppler Spectrum
1	0	0.0	0	Class
2	10	-0.9	0	Class
3	20	-1.7	0	Class
4	30	-2.6	0	Class
5	40	-3.5	0	Class
6	50	-4.3	0	Class
7	60	-5.2	0	Class
8	70	-6.1	0	Class
9	80	-6.9	0	Class
10	90	-7.8	0	Class
11	110	-4.7	0	Class
12	140	-7.3	0	Class
13	170	-9.9	0	Class
14	200	-12.5	0	Class
15	240	-13.7	0	Class
16	290	-18.0	0	Class
17	340	-22.4	0	Class
18	390	-26.7	0	Class

Table 1Model A, corresponding to a typical office environment for NLOS conditions and
50ns average rms delay spread.

Tap Number	Delay (ns)	Average Relative Power (dB)	Ricean K	Doppler Spectrum
1	0	-2.6	0	Class
2	10	-3.0	0	Class
3	20	-3.5	0	Class
4	30	-3.9	0	Class
5	50	0.0	0	Class
6	80	-1.3	0	Class
7	110	-2.6	0	Class
8	140	-3.9	0	Class
9	180	-3.4	0	Class
10	230	-5.6	0	Class
11	280	-7.7	0	Class
12	330	-9.9	0	Class
13	380	-12.1	0	Class
14	430	-14.3	0	Class
15	490	-15.4	0	Class
16	560	-18.4	0	Class
17	640	-20.7	0	Class
18	730	-24.6	0	Class

Table 2Model B, corresponding to typical large open space and office environments for
NLOS conditions and 100ns average rms delay spread.

Tap Number	Delay (ns)	Average Relative Power (dB)	Ricean K	Doppler Spectrum
1	0	-3.3	0	Class
2	10	-3.6	0	Class
3	20	-3.9	0	Class
4	30	-4.2	0	Class
5	50	0.0	0	Class
6	80	-0.9	0	Class
7	110	-1.7	0	Class
8	140	-2.6	0	Class
9	180	-1.5	0	Class
10	230	-3.0	0	Class
11	280	-4.4	0	Class
12	330	-5.9	0	Class
13	400	-5.3	0	Class
14	490	-7.9	0	Class
15	600	-9.4	0	Class
16	730	-13.2	0	Class
17	880	-16.3	0	Class
18	1050	-21.2	0	Class

 Table 3
 Model C, corresponding to a typical large open space environment for NLOS conditions and 150ns average rms delay spread.

Tap Number	Delay (ns)	Average Relative Power (dB)	Ricean K	Doppler Spectrum
1	0	0.0	10	Class + spike
2	10	-10.0	0	Class
3	20	-10.3	0	Class
4	30	-10.6	0	Class
5	50	-6.4	0	Class
6	80	-7.2	0	Class
7	110	-8.1	0	Class
8	140	-9.0	0	Class
9	180	-7.9	0	Class
10	230	-9.4	0	Class
11	280	-10.8	0	Class
12	330	-12.3	0	Class
13	400	-11.7	0	Class
14	490	-14.3	0	Class
15	600	-15.8	0	Class
16	730	-19.6	0	Class
17	880	-22.7	0	Class
18	1050	-27.6	0	Class

Table 4Model D, same as model C but for LOS conditions. A 10 dB spike at zero delay has
been added resulting in a rms delay spread of about 140ns.

Tap Number	Delay (ns)	Average Relative Power (dB)	Ricean K	Doppler Spectrum
1	0	-4.9	0	Class
2	10	-5.1	0	Class
3	20	-5.2	0	Class
4	40	-0.8	0	Class
5	70	-1.3	0	Class
6	100	-1.9	0	Class
7	140	-0.3	0	Class
8	190	-1.2	0	Class
9	240	-2.1	0	Class
10	320	0.0	0	Class
11	430	-1.9	0	Class
12	560	-2.8	0	Class
13	710	-5.4	0	Class
14	880	-7.3	0	Class
15	1070	-10.6	0	Class
16	1280	-13.4	0	Class
17	1510	-17.4	0	Class
18	1760	-20.9	0	Class

Table 5Model E, corresponding to a typical large open space environment for NLOS
conditions and 250ns average rms delay spread.

References

 J. Medbo, "Radio Wave Propagation Characteristics at 5 GHz with Modeling Suggestions for HIPERLAN/2", ETSI BRAN 3ERI074A, Jan. 1998.