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Decoding under Integer Metrics Constraints 
Jack Salz and Ephraim Zehavi 

Ahtract- We investigate the  problem of decoding digital 
data when soft decisions are constrained to take on values 
from a finite set. We propose a physically reasonable ob- 
jective function for selecting the desired asdgnmewt of met- 
rics t o  the received analog signals. We develop a search 
algorithm for designing a table-look-up that is used by the 
decoder to select the appropriate intermediate metrics and 
show that an  optimum solution exists. We provide a nu”- 
ber of illuminating examples to elucidate our ideas and work 
out in detail some practical cases. 

I .  INTRODUCTION 

In this paper we examine the problem of decoding coded 
digital data when soft decisions are constrained to take 
on values from a finite set of possible metrics (integer val- 
ues). This is an important practical consideration since 
actual decoders must inherently use finite precision arith- 
metic while optimum decision rules require the evaluation 
of likelihood functions, which for real transmission channels 
assume a continuum of values. 

In order to circumvent these nonphysical specifications, 
ad-hoc approaches are usually proposed such as, for ex- 
ample, quantizing the received signals or quantizing the 
continuous decision functions themselves. While these so- 
lutions often appear reasonable, the concomitant conse- 
quences in terms of performance degradation are extremely 
difficult to assess. More importantly, the trade-offs between 
finite computational resources and performance penalties 
are generally ill understood and a design theory based on 
finite precision would appear to be very desirable and use- 
ful. 

Here we address some aspects of this general probIem and 
restrict attention to the design of decoders of digital data 
transmitted over analog channels. We insist right from the 
start that decision functions associated with the decoding 
process must assume only integer’ values from a given finite 
set. How to assign (select) these integer-valued decision 
functions, or metrics, based on reasonable algorithms and 
how to  assess the consequences of the various choices are 
the central themes of this paper. 

Specifically, our approach is the following. Given the 
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of metrics. 

requirement that soft decisions in decoding block or con- 
volutionally coded signals must be assigned values from a 
finite set of integers, we propose and develop algorithms for 
making such assignments which are based on maximizing 
a mathematically tractable and physically reasonable cost 
function. As we shall elucidate in the sequel, the proposed 
cost function is referred to in the literature as the general- 
ized cut-off rate of the channel Ill. While this channel rate 
may not be the largest achievable rate, i t  possesses the im- 
portant property of guaranteeing that as long as the actual 
data rate is less than this rate, the probability of error can 
be made as small as desired by increasing the code length. 

Wozencraft and Kennedy [2] were first t o  suggest that a 
reasonable modulation system design criterion is the “cut- 
off rate”, Ro, of the Discrete Memoryless Channel (DMC). 
Since, Ro, is the upper limit of code rates for which the 
average decoding computation per digit is finite when se- 
quential decoding is used. Massey [3] argued that the ap- 
propriate modulation criterion is Ro, and introduced an 
iterative procedure for finding the optimum quantization 
boundaries that maximize Ro, for the binary case. His re- 
sult was generalized by Lee [4] for L-ary modulation. While 
this approach induces a partition of the likelihood space 
the decoder still has to assign optimal metrics with infinite 
precision for the quantization regions. However, in most 
practical coded systems the decoder must use a finite set 
of metrics, which are fixed for all channel conditions. In 
this case the designer’s task is to find a “good” partition 
and metric’s assignment of the likelihood space that match 
the set of metrics. Biederman, Omura and Jain [l] consid- 
ered the error performance of a coded system where chan- 
nel statistics can only be approximated. Because of this 
mismatch, they were led to introduce the Generalized Ro 
criteria. In particular, when the decoder is using an integer 
set of metrics their results reduced to the form of polync- 
mial equations for which Viterbi and Omura [5, pp. 291- 
2921 derived an upper bound on the error performance of 
a coded system employing a convolutional code. 

Since integer metrics are generally not optimum for a 
given channel, the particular problem addressed here falls 
into the general category in information theory that deals 
with the ultimate possible performance of channels with 
mismatched metrics [6]. The basic question addressed by 
information theorist is the existence of the largest possi- 
ble achievable data rate for a mismatched channel. It is 
still a conjecture that for the memoryless channel with a 
mismatched decision metric, Hui’s capacity [6] cannot be 
exceeded. However, our problem which focuses mainly on 
issues dealing with the synthesis of decision rules, has re- 
ceived scant attention in the literature. 

While it might be desirable to  select integer metrics 
that maximize Hui’s capacity, this is unfortunately an in- 
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tractable task and, therefore, we have settled on a simpler 
and mathematically tractable objective function as will be 
seen in the sequel. When the set of integer metrics is al- 
lowed to  become unbounded, the objective function ap- 
proaches the computational cut-off rate of the channel [l]. 
In this case it is possible to approximate the optimum like- 
lihood function metrics, and it is of course well known that 
with the optimum metrics, it  is possible to  achieve Shan- 
non’s channel capacity which is always greater than the 
computational cut-off rate. Since our objective function is 
always less than capacity, we attribute the short fall to  our 
particular bounding technique as will be seen later. 

In Section 11, we introduce the channel model and for- 
mulate the problem. In Section 111, we develop the design 
algorithm and prove the existence of the optimum metric. 
Section IV analyses some special illuminating cases and 
has some numerical examples. Section V reexplores the 
relation between our metric assignment and the error per- 
formance of a particular coded system, Section VI contains 
our conclusions. 

11. CHANNEL MODEL MOTIVATION AND PROBLEM 
FORM U LATI o N 

Im. 

1 Channel 1 

To Binary 
block Decoder 

digits 

Fig. 1 .  A general block coded digital data communications system 

For simplicity of presentation, we treat block coded sys- 
tems but the general ideas apply to convolutionally coded 
systems as well. A general block coded digital data com- 
munications system is depicted in Figure 1. A buffer ac- 
cepts blocks of B = RT binary digits where R is the input 
rate in bits/s, and T is the block duration in seconds. For 
each block, the coder-modulator combination selects one of 
M = ZRT suitable signals, s l ( t )  , i = 1 , . . . , M ,  
0 5 t 5 T ,  for transmission over the channel. We presume 
that it is possible to represent these time functions by vec- 
tors, si , i = 1 , . . . , M ,  in “-dimensional space. Usually, 
N’ depends on the time-bandwidth product, or on other 
suitable signal parameters. The association of the binary 
data blocks with the signal vectors, si , i , . . . , M ,  is the 
function of the encoder. 

The channel corrupts the input signal, yielding an out- 
put waveform which will also be represented by a vector 
v ( t ) ,  which will also be represented by a vector v in N -  
dimensional space where N 2 NI.  We presume that we 
are given the vector-valued probability density function of 
the channel output vector conditioned on each of the M 

input vectors, i.e., p(vlsi) , 
At the receiver, the demodulator-decoder combination 

partitions the entire N-dimensional space into M nonin- 
tersecting sets, Ai , i , . .  . , M ,  corresponding to the M 
input signals. If the received vector v falls in Ai the de- 
coder, which knows the encoding rule of the coder, provides 
the output buffer with the binary block corresponding to 
the signal si .  If the output binary digits do not correspond 
exactly to the digits in the input buffer, a “block error” is 
committed. 

As is well known, the optimum selection criterion for 
the partition set, Ai , i = 1 ,  i . .  , M ,  which maximizes 
the probability of correct decoding, P,, is given by the 
maximum-likelihood-detection rule: 

i = 1 , . .  . , M .  

v E Ai if p(vlsa) = max p(v1sj) , (1) 
3 

where it is assumed that the M possible signals are equally 
probable. Clearly, this is the optimum metric and its com- 
putation requires infinite precision to  evaluate. To mo- 
tivate the use of our objective function, we consider the 
resulting probability of error when the optimum decision 
rule is employed. 

Letting Gi(v) = 1 when v E Ai,  and 0 otherwise, the 
probability of error is, 

. M M  II 

1 
P, = 1 - P, = J p(vJs j )Gi(v)dv .  (2) 

j = 1  z = 1  
i# j  

Of course for any code consisting of a set of M vectors 
{ s i }  it is very difficult to evaluate the probability of error 
exactly and therefore, it is necessary to upper bound (2) 
and then to  assume that the codes are selected at  random. 

Getting back to the problem at  hand, suppose that for 
some reason instead of decoding with the optimum deci- 
sion function, or metric, log p(vlsi) we must decode with 
a mismatched metric, fi(v(si) .  The reasons for using a mis- 
matched metric may be varied but here, we require right 
from the start, that the metrics assume values from a finite 
set of metrics. This of course is a serious constraint and an 
increase in the probability or error is expected. 

There are many ways to assign metrics to  the received 
signal. We clearly would like to choose such assignments in 
such a way as to minimize the probability of error and yet 
not violate the constraints. So, our goal then is to deter- 
mine a metric assignment for v from a given set of metrics, 
which minimize a tight upper bound on the probability of 
error, where these metrics are used to decide on signal si 
when 

0 

riz(vlsi) 2 &(vIsj), for all i # j , (3) 
while fi(vlsi) can only assume values from the set of inte- 
gers 1 , 2  , . . . , Q’, (or any other finite set of metrics) which 
will be called a metric set. When equality results, a fair 
coin is tossed to resolve the tie. 

To proceed toward the objective function, the con- 
strained integer inetrics rTz(vlsi) are used in a standard 
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Chernoff bound applied to (2) . 

(4) 

This holds since for all v and X >_ 0, 

Gi(v) = [ m ( v ~ s ~ ) - f i ( v l s ~ ) ]  (5) 

and as is standard in this approach, the positive constant 
X may be optimized to  yield the tightest bound. To make 
further progress, we apply a standard random coding ar- 
gument and average (5) with respect to  all sets of code 
vectors, si .  It then follows that there must be at least one 
signal set that achieves a probability of error not greater 
than the average. 

Toward this end, let SI, s2 , . . . , S M  be selected inde- 
pendently from a population characterized by an iden- 
tical probability density function, ~ ( s j ) ,  and q ( s i ,  si) = 
d s i )  dsj).  

Averaging (4) yields an upper bound on the average 
probability of error P, 

(7) 

The next stage in our model simplification is to restrict 
treatment to  the "memoryless" channel. This assumption 
implies that each component in the vectors si are picked 
independently with identical probability distribution. This 
gives rise to  the product from 

N 

P(vlsi) = ~(vnlsni) 9 (8) 
n = l  

where the vnls and sn;'s are the nth components of the 
vectors v and s; respectively and P ( v , , ~ s ~ ~ )  is the nth com- 
ponent probability density. This is a Discrete Memory- 
less Channel (DMC) model without feedback. As a conse- 
quence of these arguments the following also holds, 

N N 

~ q ( s ) ~ ( v ~ s i )  = n E,(,,,,, P(vnlsni) = [ ~ q ( s ) ~ ( v n ~ s ) ]  
n = l  

(9) 
where, p(vnls) and q(s)  are now one-dimensional proba- 
bility densities in case of baseband traiisrnission and two- 
dimensional, or complex valued, when passband transmis- 
sion (QAM or L-ary PSK) is used. We also make the rea- 
sonable assumption that the metrics rh(vlsi), 
i = 1 , . . . , M are additive, i.e., 

N 

&(VIS*)  = m(vnIsn i )  * (10) 
n = 1 

The integer values assumed by the metrics m(v, 1s.i) are 
now taken from the finite set of integers 1 , 2 , .  . . , Q. In this 
"memoryless" notation, the signal length becomes, 

T = N r  (11) 

where r is the duration of the basic signaling interval. 

in the form, 
Substituting (8)-(11) into (6) we obtain an upper bound 

p, > - e -Nr(R( ' ) -R)  (12) 

where 

h(X) = -- 1 In / dw [E,(,)p(vls) e-Xm(wls) eXm('lS)] . 

(13) 
Since A is an arbitrary positive number we may optimize 

it to yield a tighter upper bound. Thus, 

P, < e - N r ( R ( X * ) - R )  , and R ( X * )  = max R ( X )  . (14) 
X>O 

- 

It is easy to  verify that the objective function k(X*) is 
invariant to scaling and shifting of the metric set. To qual- 
ify as an objective function, we require that for any set of 
metrics, there is an assignment m(w1s), where s is a ran- 
dom variable with a prior probability density q(s) ,  such 
that R(X*) is greater than zero. Note that when X = 0 

(15) 
Clearly, 9 IX=o must be positive for a t  least one met- 

ric assignment in order to  insure the existence of a nonzero 
rate. This requirement places the following constraint on 
the allowed set of metric assignments. 

(16) 

Without loss of generality2 we can assume that 0 and 1 
are in the metric set, and that the metric assignment is 
according to the equation 

By scaling and shifting any metric one can generate an equivalent 
metric set with 0 and 1 .  
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which is equivalent to a system with zero mutual informa- 
tion (I(v : s )  = 0 . Thus, for any memoryless commu- 
nication system with I (v  : s )  > 0 there exist a non-zero 
rate. 

Now, suppose that in our formulation, we allow the met- 
rics m(vls)  to be unbounded. In this case m(vls)  can 
very closely approximate p(v1s). Moreover, we see from 
Schwartz ’s inequality, 

1 

It is straightforward to see from (13) that this rate is 
achieved when the metrics 

(22) 
1 

m(vls> = 1 In Jm . 
In this limiting case, we can at  best achieve Ro and clearly, 
this is not the largest achievable rate, since by using 
more sophisticated bounding techniques [5] it is possible 
to achieve channel capacity. 

Returning to (13) we observe that for any set of mis- 
matched metrics { m ( v l s ) }  the generalized cut of rate is 
defined as [l] 

&(A*,  q * )  = max R ( A , q )  
x>o, q>o 

(23) 

where q(s) ds = 1. 
Thus it may appear reasonable to further maximize (23) 

with respect to q.  This augmented constraint optimiza- 
tion problem is unfortunately intractable and additional 
simplifications must be made. Invoking the fact that in 
most practical systems the signal points in a constellation 
are drawn from a discrete ensemble and so, a reasonable 
assumption to make is, that if there are L points in the 
constellation, the probability of drawing such a point in 
a random code is q ( s )  = 1/L. When these assumptions 
are applied in (13) we obtain the simplified and workable 
objective function. 

where m ( v )  = (m(vlsl), m ( v l s z ) ,  . . . , m ( v I s ~ ) )  is the 
metric L-tuple. Since each m(vls i )  E { 1 , 2 , .  . . ,  Q} one 
of QL L-tuples is associated with each point v. 

Our central problem can now be stated as follows. Find 
A *  > 0 and metric assignment m*(v) for all v such that 

W(m*(v), A * )  = min W(m(v),A) (25) 
m ( v ) ,  x>o 

where each entry in the L-tuple assumes values in the set 
of integers, { 1 , 2 , .  . ., Q}. 

In the next section, we develop an algorithm which pro- 
vides a solution to this problem and prove its existence. 

111. THE OPTIMIZATION ALGORITHM 
Before deriving the optimum design algorithm and prov- 

ing the existence of a solution, we examine in some detail 
feasible and reasonable metric assignments in some limiting 
situations. We hope that these examples will provide some 
intuition as to the nature of the optimum assignments in 
general. 

To fix ideas, consider a situation where the channel char- 
acterizing probability densities, p(vls;), i = 1 , 2 ,  . . . , L are 
sharply peaked at the signal points si. These points are the 
elementary alphabet from which code words are composed 
and can be either on the real-line, a plane or in some higher 
dimensional fixed space. The general ideas illustrated here 
are independent of the dimensionality of the basic alphabet 
subspace. The situation we have in mind represents large 
SNR operations so that the chance of confusing the signal 
points is very small. In this situation, where the number 
of points L is fixed, there is hardly a need for coding and 
the channel capacity approaches $ log, L bits/sec. In this 
limiting operating situation we expect the cut-off rate as 
well as the generalized cut-off rate the approach capacity. 
Moreover, we expect the metric assignments in this ideal- 
ized situation to be simple and require no more than two 
integers to specify the metric vector. 

To see the rationale for this solution, consider the 
Voronoi regions of the space of the basic alphabet vectors 
v. These regions form a partition of the subspace and are 
defined as follows. Denote the regions formed by the set 
C,, n =  1 , 2  , . . . ,  L ,  

C,, = {v : v E R (or R2) ; p(vIsn) 2 p ( v ) s ; )  vi} (26) 

and write (24) as sums of integrals over these regions, 

W 0 m ( v ) ,  A = 

In the discussion to follow we assume that the metric set 
is 0 = (0, 1) and make the following metric assignments. 
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6 . 7  I O - '  
2 .3  I O - '  
2 .0  I O - '  
1 .0  I O - '  
1 .0  I O w 3  
1.0 
1.3  IO-1 
4.5  
4 . 0  I O - '  
2 .0  I O - '  
2 .0  
2.0 
2 .0  I O - '  
1 .0  I O - '  
1 . 0  
1.0 
2 . 0  I O W 5  

In other words, the various Ltuples characterizing the met- 
rics are now the following 

0.41478 
0.62256 
0.64386 
0.73817 
0.91157 
0.97143 
0.36165 
0.57186 
0.59436 
0.69627 
0.89373 
0.96523 
0.69561 
0.77572 
0.92375 
0.97530 
0.98888 

v E C 1 4 m ( w ) = ( 1 , 0 , 0 ,  . . . ,  0) 
w E C' + m(w) = ( 0 , 1 , 0 , . .  ., 0) 
.................... . . . . . . . . . .  
21 E CL -+ m( 21) = (0, 0 , o  , . . . , 1) 

For this assignment we obtain explicitly 

L 1 
W(m(w), A) = 5 [ex + L -  11 dv 

n=l 

i -  = - [ex + L - I][ (e-' - 1) P, + 11 . 
L 

(29) 
Note that in this special case the term exm(u18*) ]  is I 

ex + L - 1 for all w ,  and the quantity, 1 
. L a  

can be thought of as the uncoded probability of making cor- 
rect decisions and, as will be seen, is the single parameter 
determining the value of (29). This can be seen after the 
derivative of W m(w), A with respect to X is set to zero, 
which then results, upon inspection, in a unique minimum 
0 

Substituting, this quantity into (29), we obtain the fol- 
lowing optimized figure-of-merit for this particular metric 
assignment: 

1 
W(n1(v), A') = [a+& - 1)/(1- PC)l2  W(P,) 

(32) 
and the generalized cut-off rate for this example becomes, 

ii(x.1 = -$  l o g , W ( ~ , )  = h { l n L - 2 1 n  

[fl+ d(L - 1)(1 - P c ) ] }  bits/sec. 

(33) 
We see from (30) that 

(34) 
1 
L -  
- < P, 5 1 .  

The upper and the lower limit results when p(vlsi) is 
independent of s,. The highest possible rate is achieved 
when P, = 1 and zero rate results when P, = E. 
These can be vyified directly from (33). It can be eas- 
ily shown that R(X*) is equal to the computation cut-off 
rate of a symmetric discrete memory channel with input 

s E {SI , 82 , . .  . , SL} and output y E {PI, yz , . .  . , y~}, with 
transition probability 

(35) 

In Table I, we have calculated some typical achievable 
rates for different values of P, and L. We see that for a 
binary system with an uncoded error rate of loW2 slightly 
more than 25% of capacity is given up with this most ele- 
mentary binary metric assignment. However, when L = 4 
a smaller amount of the capacity is given up for th_e same 
uncoded error rate. This is not surprising, since R(X*) is 
a monotonically increasing function of L that is asymptot- 
ically approaching the limit 

1 
(36) &A*) R5 -- l ogd l  - PC) . 

Let us denote by E, the signal energy and by No the 

TABLE I 
SOME TYPICAL ACHIEVABLE RATES FOR DIFFERENT VALUES OF P, 

AND L 

- 
L 

- 
2 
2 
2 
2 
2 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 - 

EL N. & CdB' 

BPSK/qPSK 
0 . 5 0  
3.00 
3.24 
4.32 
6.79 
8.40 
0.50 
3.00 
3.24 
4.32 
6.79 
8.40 
4.32 
5.21 
7.33 
8.79 
9.59 

l-p r log, L W ( P 4  

0.75013 
0.64952 
0.64000 
0.59950 
0.53161 
0.51000 
0.60571 
0.45259 
0.43869 
0.38090 
0.28968 
0.26235 
0.38124 
0.34117 
0.27787 
0.25871 
0.25388 

single-sided additive noise spectral density. Then, from the 
observation of Table I it is clear that for a fixed value of & (fixed energy per dimension), the objective func- 
tion decreases while L increases due to  the suboptimal met- 
ric assignment for L = 4. 

Now, let us assign the metric (0, l}in a more efficient 
way with respect to the objective function (24). From the 
observation of Eq. (24) it is clear that the right term can 
only assume L different values. i.e. 

L 
exm(ulst) = rex + (L - TI, T E {0,1, . . . , L - 1)  . (37) 

i= l  
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Here we exclude the all ones metric, since it is equivalent to 
the all zeros metric. We also can conclude that ifp(wIsi) > 
p(v(sj) then m(v1s;) > m(v) s j ) ,  since otherwise we can 
reduce the objective function by exchanging the metrics. 
Thus, the received signal space w is partitioned into 2L - 1 
subsets. Now, let us denote by & ( U )  the set of r most 
likely signals, i.e. 

can run faster, if the search is over a smaller set of candi- 
dates. One possible set of candidates is the set of metrics 
of the adjacent regions to this point in the previous iter- 
ation. Second, for the simple case of binary signaling the 
problem can be simplified as it is done in the first exam- 
ple in section IV. Third, this algorithm can be used either 
for continuous conditional density functions, or for discrete 
conditional distributions. This is a major advantage of this 

on discrete distributions. Massey [3], algorithm as well as 
Br(v) = { si)p(v)si) > p(v)sj) for at  least L - T distinct sj algorithm since the numerical computations are done based 

(38) 
For a fixed value of A, we have to assign the metric vector 
with r* ones, that minimizes the function 

[e-’ p(wlsi) + p(vlsi)] [ r e X 2  + ( L  - T ) ]  . 
i E B , ( u )  iSrBv(u)  

(39) 
The optimal metric assignment required to find A * ,  that 
minimize equation (24), where the metric assignment is 
according to equations (38) and (39) .  
As it becomes evident, the explicit demonstration of the 
optimum assignment even in the simplest of situations is 
not tractable and can only be done by the use of a search 
algorithm. 

We now return to the objective function (24) and wish 
to determine a X 2 0 and a metric vector m(v) = 
(m(v\sl), m(vls2>,  . . . , m(w1sL)) among all QL tuples 
which minimize it. Since the integrand is positive, the 
minimization can be carried out for each point U .  Thus, 
our problem reduces to the following integer programming 
minimization problem. Find, the solution to 

for a given set of metric assignments {m*(vlsi)}f when 

i >i 
for all t i  E R(or R2) . 

This induces, for each A, a complete partition of the w 
space into at  most Q L  disjoint sets, { A , } Y L .  Once hav- 
ing performed this partition for a given A, we repeat it for 
all positive A. To complete the optimum assignment, we 
choose the m(wlsi) and the A satisfying (41) and yielding 
the smallest value of (24). The algorithm can be imple- 
mented in the signal space or in the likelihood domain. 
It can be easily shown that under certain conditions the 
boundary between quantization regions in the likelihood 
space is an hyperplane. Similar result was obtained by Lee 
[4] when the quantization is done under different criteria. 

Four remarks about the above algorithms are in order. 
First, the most time consuming part’ of the algorithm is the 
selection of metric assignment for each point. This step 

. -  ~ 

Lee [4] algorithm cannot be used for discrete conditional 
distributions. Fourth, for most practical problems (QAM, 
L-ary PSK, non orthogonal modulation), the dimension of 
signal space is smaller (typically 2) than the dimension of 
the likelihood space which is L - 1. In addition, an algo- 
rithm in the signal space is simpler and does not require the 
mapping from the likelihood space to the signal space (see 
Lee’s [4] remark regarding the evaluation of the cost func- 
tion). Based on these remarks we think that the algorithm 
in the signal space is more efficient than is counterpart in 
the likelihood space. 

While the foregoing description of the design algorithm 
is straightforward, two fundamental questions must be an- 
swered. First, what is the computationally complexity of 
the search algorithm, and second does a solution exist. We 
now elaborate on the first question. We envision a decoder 
that will have a table look-up consisting of a list of the met- 
ric vector to be assigned to each received point w. Since w 
is assumed to be continuous, the table look-up will provide 
metrics to a finely quantized version of the v space. Thus, 
the complexity of the decoder will corisist only of adding 
integer values from the set ( 1 , 2 ,  . . . , Q) after looking up 
corresponding values in the table look-up. The design task 
is to construct a look-up table. As to the second question, 
we actually answered by the example we have presented 
earlier. There, we demonstrated that there exist accept- 
able metric assignments for a unique X > 0 and in fact 
have calculated the resulting generalized cut-off rates for 
such assignment. 

In the next section, we provide additional illumina,ting 
examples and show how to apply the search procedures 
outlined above. Also, we work out in detail the L = 2 case 
which can be done in closed form. 

IV. SPECIAL CASES AND NUMERICAL EXAMPLES 

In this section we will examine a few examples where our 
approach can be easily used to find a good metric assign- 
ment. We will start with the simple binary case for which 
the problem is reduced to finding a minimum value of a 
polynomial. 

A .  T h e  b inary  case ,  L=2 

Here for illustration purposes the analysis is restricted to 
a binary channel with a continuous channel output random 
variable, U, characterized by some symmetric conditional 
probability density functions f (v l  & U ) ,  v E (-m, co). In 
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this case Eq. (24) can be now written a8 

w(m(V), A) = &[a (f(TJla)e-xm(ula) + f ( V l  - Q) 

1 e-~m(v~-a))]  . [ ~ ~ ~ ( u I Q I  + eXm(v1-a) 

= 1 + f J d v [ f ( v l u ) e - x A ( u )  

+f(v( - a) e x q  

(42) 
where the difference metric A(v) = m(ula) - m(vla) takes 
on values in the set 8 = (0, f l  , . . . , f l z  , . . . , f 2 Q } .  Let us 
now fix A. Then for any value of v we have to  assign a pair 
of metrics k or -k, which corresponds to  the transmitted 
signals a or -a, respectively. In order to  minimize our 
objective function, given X > 0, we select A that minimizes 
the integrand in Eq. (24). In other words, the metric k 
will be assigned to  the vector v, if k is the solution to the 
inequality, 

f (v la)C-k+f(v l -u) lk  I: f(vla)c‘-j+f(vl-u)c‘-j , v j  E 8 1  

(43) 
where 6 = ex.  This inequality can be expressed as a func- 
tion of the likelihood ratio 

For a given value of h > 0,  the optimal metric assign- 
ment is to assign the metric k for all received signal v that 
satisfies the inequality 

CZk-’  < A(.) 5 C2’+’ . (44) 

We note that any value of A induces a unique partition 
of the received signal space to (4Q + l),  nonoverlapping 
distinct sets on the real line. Now the minimization of the 
objective function is reduced to  find the optimal parameter 
A*  = ln(C*). 

A concrete example let us determine the optimal quanti- 
zation for a BPSK coded system operating over a Gaussian 
channel. In this case A(v) = exp(2va) and a2 = 2, where 
E, is the signal energy and No is the single-sided additive 
noise spectral density. 

The optimal quantizer, in the sense of minimizing 
Eq. (24), will assign a metric lz or -k to v according to 

m(v) = li sign(v),  lvl E ((2k-1)6/2, (2k+1)6/2], k 2 o , 
(45) 

where 6 = ln((.)/a = X/a,  and ( = eA. 
For a coded BPSK system with E,/No = 0.5 dB, 

and the metric set 0 = ( O , f l ,  f2, f3, f4), the opti- 
mal metric assignment, over a Gaussian channel is a uni- 
form quantizer with a spacing 26 = 0.55 (or A = 6a = 
. 55 .  d 2 .  10(E~/N0) /1~  = 0.82). This result agrees with the 
upper bound on the error performance of a coded system 
which was obtained by the generating function technique, 
and the simulation results in Heller and Jacobs [7]. Fig- 
ure 2 depicts the minimal E,/No required to support r /Ro 
(or r/R(A*)) for infinity quantization, and two practical 
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Fig. 2. Minimum E, / N. E, /No as a function of 1 / R. for various quantizaticm metrics. 

metric sets. From these result we conclude that the loss 
due to metric constraint is a less than .2 dB for most prac- 
tical rates. Figure 3 describes the region size for these 
metric sets as a function of E, /N , .  Note that for the met- 
ric set 0 = (0, f l ,  f 2 ,  f 3 ,  f 4 ) ,  the region for zero metric 
is [-6,6] and for the metric set 0 = (0, f l ,  f 3 ,  f5, f7), 
the region for +1 metric is [0,26]. 
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Fig. 3. ’Ihreshold value as a function of E, 1 No and metric set. 

B. L-ary PSK modulation over Q Gaussian Channel 

Let us now assume a Gaussian channel where the re- 
ceived signals are two dimensional vectors 2r = ( 2 ,  y ) ,  with 
conditional probability density function. 

p ( ( z ,  y ) / (a ,  b ) )  = & exp (w - (y-b)a ’ (46) 
a2 + b2 = 2E,/N0 

where (a ,  b )  are the coordinates of the signals in the 2-D 
signal space. For L-ary PSK modulation the signal constel- 

.. .. . . ....-.- l _ “ .  . 
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lation is symmetric with respect to rotation of 2r /L and 
reflection. Thus, it  is sufficient to find the optimal metric 
assignment for all vectors inside an angel of r / L .  Clearly 
for a fixed value of w, one has to sort the conditional prob- 
abilities p(wlsi)  in decreasing order (i.e., sorting the signal 
points in increasing angular distance), and to assign their 
metric in decreasing order. For example for q5 E [O,r/L), 
andsignalset  si =d-e2"*lL, i = O , . . . ,  L - 1 ,  the 
metrics satisfy the inequality 

(47) 
m(vls0) 2 m(vls1) 2 m(WlSL-1) L m(vls2) 

2 . . .  2 m ( v h , / 2 )  ' 

The vector m(w) assumes f~(l0l) different values for 
4 E [O, r /L )  where the function f~(l0l) is expressed in a 
recursive form, 

101 

f L ( l 0 l )  = fL-l(lOl+ 1 - i), f 2 ( j )  = j, j = 1 , 2 , .  . . , 

(48) 
i= l  

where 101 is the cardinality of the set 0.  The func- 
tion f~(l0l) is given in Table I1 for different values of L.  
Note that the metric ( O , O ,  0,O) is equivalent to the metric 

For QPSK, E,/N, = 3.5 dB, the partition of the signal 
space is shownjn Figure 4.  We obser_ve that our objec- 
tive function, R/r ,  assumes a value R/r  = 0.48 that is 
larger than was obtained from the simple quantization of 
the space that was proposed in section I11 (Table I). Thus 
we see the gain our metric assignment yields is about 20% 
more in R/r  with regard to  the standard hard decision for 
BPSK. 

(m,  m, m1 m). 

1. 

.72 1.04 
Fig. 4. Partition of the first quadrant for QPSK , Q=2. 

V .  THE ERROR PERFORMANCE OF A CODED SYSTEM 
For binary signaling and convolutional codes, the error 

performance can be evaluated via the generating function 
approach [5]. In this case, the generating function can be 
obt,ained as t,he transfer function of the sta,te diagram of 
the code regarded as a signal flow graph. The state tran- 
sitions are then labeled as JiW', where i denotes the cor- 
responding number of channel symbols, and T is the Ham- 
ming distance between the error path corresponding to the 

state transition and the correct path corresponding to the 
all-zeros codeword. Zehavi and Wolf [8] proved that un- 
der certain conditions the same state diagram (but with 
different labels) can be used to  compute the error weight 
distribution of a class of trellis codes. Following the same 
approach, upper bounds on the error performance of L-ary 
modulation with quantization can be computed for a spe- 
cial class of codes and channels. The following definitions 
differ slightly from the original ones in [8] and are useful in 
the generalization to follow. 

Let us assume a trellis coded system which is based on 
a rate (n  - l ) / n  convolutional encoder followed by a map- 
ping p that maps the n-tuples of the encoder C t o  signals 
E {SI , . . . , SL}. As we stated before the quantizer can be 
viewed as a partitioning of received signal space into re- 
gions. If the received signal falls in a region Aj then the 
quantizer assigns a vector of metric 

m(Aj) = (mj(sl), mj(s2)  , . .  ., m j ( s ~ ) )  = m(w), Vw E Aj 

As before m(Aj)  assumes values in a finite set of vectors. 
To evaluate performance of the mismatched metric for a 
trellis coded system we need the following definitions. 

Definition 1; Let E be binary n-tuple. Then, the profile 
of the signal s = p(C) with respect t o  a vector E is 

(49) 

F ( C , E ,  W )  = P3(C)Wm,(~(CcPE)) -m3(B(C))  (50) 
A3 

where Pj ( C )  stands for the conditional probability 
Prob(w E Ajlp(C) was transmitted), and is the mod2 
addition operation, 

Definition 2: Let B be a set of channel signals of cardi- 
nality 2n-1. The weight profile of the set B with respect 
to a given n-tuple vector E is denoted F ( B ,  E ,  W), and is 
given by 

F ( B , E , W ) =  F ( C , E , W ) .  (51) 
fi(C)EB 

Definition 3: Let us assume that B and BC = Q - B ,  are 
two distinct subsets composed of channel signals. Then, the 
combined signal constellation and the channel has uniform 
weight profile property with respect to subset B if 

F ( B C ,  E, W )  = F ( B ,  E, W) = F ( E ,  W), VE . (52) 
Let us also assume that B and Bc are distinct subsets com- 
posed of channel signals which diverge from the same state 
in the trellis diagram of the code, and that the combined 
signal constellation and the channel has uniform weight 
profile with respect to subset B. Then, for a trellis code 
that satisfies the conditions of Theorem 1 in [813 the modi- 
fied generating function approach can be used for bounding 
the error performance of the code, by selecting the value 

3There are two conditions: 
(a) The trellis code is based upon a binar (linear) convolutional 
code followed by a nonlinear mapping from the encoder output 
to channel input symbols. 

(b) The uniform weight profile property holds (Eq. (52)).  
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Q(l+Q)(2+Q).  2520 (00000000), (11111110), (11111100) , ' 
(5021280 - 75164229 
+1704521Q2 + 1076532Q3 

(11111000), (11110000), (11100000), 
(1 1000000~ , ~10000000) 

-285491Q4 

TABLE I1 
SOME VALUES OF f ~ ( 8 )  FOR DIFFERENT VALUES OF L 

of W that minimizes the value of the modified generat- 
ing function. Note, that uniform weight profile property 
depends on the code, the signal constellation and the tran- 
sition probabilities of the channel. 
The modified generating function of a trellis code enumer- 
ates the number of codewords that have a fixed pattern of 
weight profile. The modified generating function of a trellis 
code, T(W, J) can be written as a sum of products of the 
weight profiles [8] given by 

N N  

T ( W , J )  = c J-J JF(E,W) 1 (53) 
E p = l  

Here the sum is all over codewords 
E = {El,  E2 , . .  . , E, , . .  . , EN} of the convolutional code 
that diverge from the all zero state and emerge after N 
branches. Based on the results of [8] , this sum of products 
can be computed by labeling a state diagram with S states, 
where S is the number of decoder states if the trellis code 
is based on a linear convolutional code and the code has  
uniform weight profile property. 

For a given codeword E the polynomial n,"=, F(E,, W )  
can be written its 

N 2n 

G(E, W )  = IT F(E,, W )  = n F ( E  = C,, W)". . (54) 
p = l  r=l  

Here, R, is the number of times the error sequence E pos- 
sess the vector E = C,. 

The sum of all pairwise error probabilities for choosing 
an incorrect path (with respect to a vector E) is equal to 
the total sum of the coefficients of G(E, W )  with negative 
metrics plus half of the coefficient with zero metric. 

Let, us denote by, 

N - 1  

A(%) = akZk and { A ( % ) } -  = a , /2+  U k  . ( 5 5 )  
k = - N  k = - N  

Therefore, 

PE(C C @ E )  = {G(E, W ) } -  (56) 
C in the code 

It is clear that { A ( z ) } -  cannot be easily calculated. There- 
fore, we can use the Chernoff bound approach. Let 
F ( E  = E,., W,.) = min,>o F ( E  = E,, W ) .  Then, in a sim- 
ilar manner to  Viterbi and Omura [5, pp. 291-2921, the 
average first error event is bounded by 

1 
P E  I {T(W> J ) } - I  J=2/L I $n{T(W,., J ) } I  J = 2 / L  ' 

(57) 
Another approach is to use W" = e x * ,  where A' is the 
optimal Chernoff parameter that minimizes the objective 
function in Eq. (24). 

Thus, a tighter upper bound on the first error event prob- 
ability of a trellis code that satisfies our conditions, is given 
by 

P E  5 - 1 min {min {T(w, , J ) )  I l ~ T ( W * l J ) l ~  } 
J=2/L J=2/L 2 

(58) 
and a similar expression can be obtained for the bit error 
rate. 

Fig. 5. Schematic description of the signal space partition for QPSK, Q=2. 

Consider an example of QPSK signals and Q = 2. In this 
case there are thirteen subsets, A j ,  and thirteen different 
values of the conditional probability, Pj. For a symmetric 
channel with respect to  a phase rotation of 90" shift, there 
are only nine distinct values of conditional probabilities Pj . 
These can be easily verified from the schematic diagram 
in Figure 5 and Table 111. The index j of PJ stands for 

- - .  I I- 
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C Ao Ai A2 A 3  A4 A6 A7 As A9 Ai1 Aiz A13 A14 I 

0 0 0 0 0 0 0 0 0 1 1 1  1 1  1 
0 1 0 0 0 0 1 1 1 0 0 0  I 1  I 
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TABLE I11 
METRIC ASSIGNMENTS AND CONDITIONAL PROBABILITIES FOR QPSK MODULATION 

0 1 1  1 0  1 I O  0 i o  0 1 1  
0 1 1 0  1 0 0 1 0 1 1 0 I 1 0  

C\E (00) (01) (11) 
(00) 1 a W 1  + P W - ’ +  (1 - a - a )  y w ’  + p w - ’ +  (1 -y - p )  
(01) 1 awl + (1 - a  - P )  yW1 + p w - l  + ( I  - 7  - p )  

y w 1 +  pw-1 + (1 - y - p) 
y w ’  + p w - l +  (1 - y - p )  

(11) 
(IO) 

F ( E ,  W )  

1 
1 

2 

awl +PW-1+ (1 - a  - p) 
awl + P W - l +  (1 - a - p) 

2 ( a w ’  + P W - l +  (1 - - P)) 2 ( y W  + p w - l +  (1 -y - p,) 

(IO) 
a w l + P W - l  + (1 - a -  P )  
a W 1 + P w - l  + ( I  -.-PI 
awl + P W - l +  (1 - - P )  
awl + P W - l +  (1 - a  - P )  

2 ( a w ’ +  ow-1 + (1 - a  - a)) 

TABLE IV 
THE WElGHT PROFILE OF THE SIGNAL s = ~ ( c )  WITH RESPECT TO E 

the integer number representation of the binary four tuple 
m ( w ) ,  i.e. if Aj has a metric vector m(,u) = (1 1 l o ) ,  then 
j = 14. The weight profile of a signal p ( C )  with respect to 
any binary vector is not a function of the signal itself, and 
therefore with respect t o  the partition of the subsets 
B = ((00), (11)) and Bc = (01, lo) ,  the code has the uni- 
form weight profile property as it is shown in Table IV. 
Thus, the average first error event probability is bounded 
by 

with 
w1= w3 = G; W, = m. 

VI. CONCLUSION 

In this paper we have proposed a physically reasonable 
objective function for selecting the desired assignment of 
metrics t o  the received analog signals. We developed a 
search algorithm for designing a table-look-up that is used 
by the decoder to select the appropriate intermediate met- 
rics and showed that an optimum solution exists. We pro- 
vided a number of illuminating examples to elucidate our 

ideas and have worked out in detail some practical cases. A 
new bound based on the modified generating approach for 
quantized coded system was derived and applied for QPSK 
convolutional coded data transmission. 
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