环形电桥的 HFSS 仿真

一. 开始

- 一) 启动 HFSS
- 二)设置工具选项

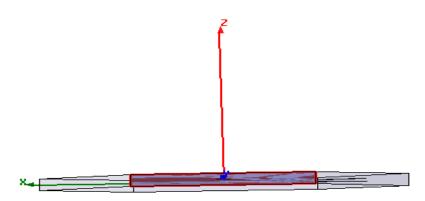
注意: 为了按照本例中概述的步骤,应核实以下工具选项已设置:

- 1. 选择菜单中的工具(Tools)>选项(Options)>HFSS选项(HFSS Options)
- 三) 打开一个新工程
- 1. 在HFSS窗口,点击标准工具栏中的新建图标,或者选这菜单中文件(File)>新建(New)。
 - 2. 从工程(Project)菜单中选择插入HFSS设计(Insert HFSS Design)。
- 四)设置求解类型
 - 1. 选择菜单HFSS 〉 Solution Type 。
 - **2.** Sloution Type 窗口:
 - 1). 选择模式驱动(Driven Modal)。
 - 2). 点击确定

二. 创立3D 模型

- 一. 设置模型单位
 - 1. 选择菜单选项3D Modeler> Units
 - 2. 选择模型单位
 - 2.1选择单位: mm
 - 2.2点击OK 按钮
- 二. 设置材料
 - 1. 在3D建模器材料工具条里,确定材料为自己设定的材料名字为My_sub,介电常数为2.33,损耗因数为4.29e-4
- 三. 创建波导

创建环形电桥


- 四. 创建主/从边界物体
 - 1. 设置栅格平面
 - 2. 画主/从边界物体
 - 3. 命名
 - 4. 设置栅格平面

- 五. 通过复制来画从边界
- 六. 改变从边界的命名通过下面步骤可以把复制的主边界改变成从边界
- 七).指定主/从边界通过下面的步骤来创建边界

三. 建立波端口 (WavePort) 通过以下步骤来完成波导上波端口的

建立

- 1. 选择菜单*Edit>Select>By Name*
- 2. 选择面对话框:从左边的导航栏里选择waveguide
- 3. 选中waveguide中最底下的那个面
- 4. 点击**OK**
- 5. 选择菜单HFSS>Excitation>Assign>Waveport
- 6. 名称: p1

- 7. 点击Next
- 8. 波端口:模式 (Modes) 点击Next
- 9. 波端口:后处理(Post-Processing)点击Finish

四、设置分析

- 一) 创建一个分析设置: 通过下面步骤设置分析:
 - 1. 选择菜单HFSS>Analysis Setup>Add Solution Setup
 - 2. 解的设置窗口

2.1点击General

求解频率(Solution Frequency): **10.0GHz** 最大步数(Maximum Number of Passes): **10** 最在delta S(Maximum Delta S):**0.1**

2.2.点击OK

- 二) 辐射(Radiation Setup)参数设置:通过下面步骤来建立辐射参数
 - 1. 选择菜单HFSS>Radiation>Insert Far Field Setup>intinite Sphere
 - 2. 远场辐射球面设置对话框

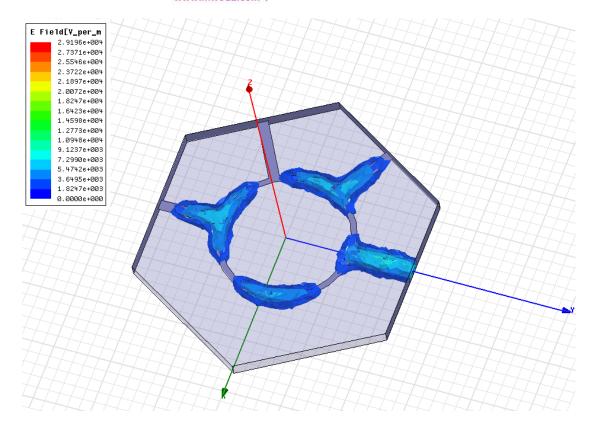
五. 保存工程

六. 分析 (Analyze)

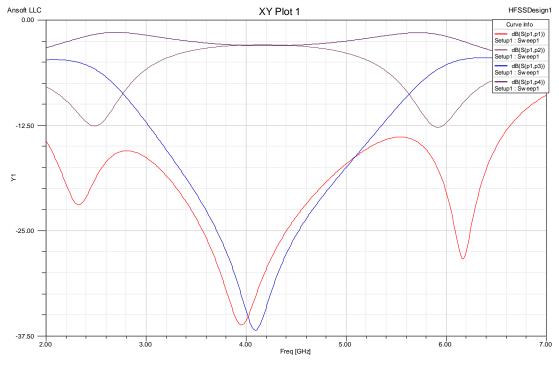
- 一) 模型检查为了确定建模的准确性:
 - 1. 选择菜单HFSS>Validation Check
 - 2. 点击close

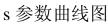
注意: 使用信息管理器来查看错误和警告信息。

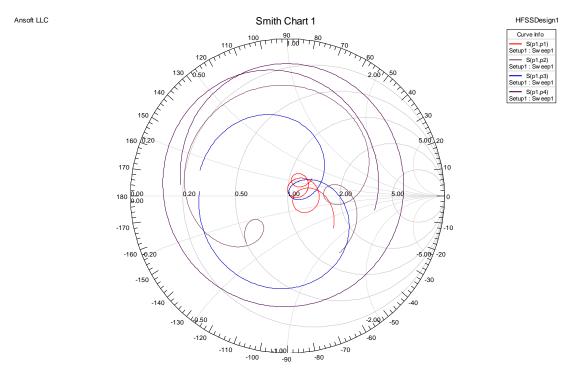
- 二) 分析开始求解过程:
 - 1. 选择菜单HFSS>Analyze ALL


七. 结果

. 选择菜单HFSS>Results>Solution Data , 如下图


Ansoft LLC Data Table 1


		dB(S(p1,p1))	dB(S(p1,p2))	dB(S(p1,p3))	dB(S(p1,p4))
	Freq [GHz]	Setup1 : Sw eep1			
288	4.870000	-18.406414	-3.608606	-19.338528	-2.689957
289	4.880000	-18.296221	-3.631023	-19.194061	-2.678050
290	4.890000	-18.187071	-3.654001	-19.050071	-2.665963
291	4.900000	-18.078962	-3.677553	-18.906524	-2.653699
292	4.910000	-17.971891	-3.701695	-18.763385	-2.641257
293	4.920000	-17.865856	-3.726440	-18.620623	-2.628639
294	4.930000	-17.760855	-3.751803	-18.478206	-2.615845
295	4.940000	-17.656890	-3.777801	-18.336104	-2.602875
296	4.950000	-17.553960	-3.804449	-18.194289	-2.589731
297	4.960000	-17.452066	-3.831763	-18.052733	-2.576414
298	4.970000	-17.351212	-3.859763	-17.911410	-2.562924
299	4.980000	-17.251399	-3.888464	-17.770294	-2.549264
300	4.990000	-17.152632	-3.917887	-17.629362	-2.535434
301	5.000000	-17.054915	-3.948049	-17.488589	-2.521436
302	5.010000	-16.958253	-3.978971	-17.347955	-2.507272
303	5.020000	-16.862654	-4.010673	-17.207439	-2.492943
304	5.030000	-16.768123	-4.043177	-17.067020	-2.478450
305	5.040000	-16.674669	-4.076505	-16.926680	-2.463797
306	5.050000	-16.582300	-4.110679	-16.786401	-2.448985
307	5.060000	-16.491026	-4.145723	-16.646168	-2.434017
308	5.070000	-16.400858	-4.181661	-16.505964	-2.418895
309	5.080000	-16.311806	-4.218518	-16.365776	-2.403622
310	5.090000	-16.223885	-4.256322	-16.225589	-2.388200
311	5.100000	-16.137105	-4.295098	-16.085392	-2.372634
312	5.110000	-16.051483	-4.334875	-15.945175	-2.356926
313	5.120000	-15.967032	-4.375681	-15.804926	-2.341080
314	5.130000	-15.883770	-4.417547	-15.664637	-2.325100
315	5.140000	-15.801714	-4.460503	-15.524300	-2.308990
316	5.150000	-15.720882	-4.504582	-15.383909	-2.292754
317	5.160000	-15.641293	-4.549817	-15.243458	-2.276397
318	5.170000	-15.562969	-4.596242	-15.102943	-2.259924
319	5.180000	-15.485931	-4.643892	-14.962361	-2.243341


以下三张图分别为环形电桥加电场时仿真图和三通管的 s(p1,p1),s(p1,p2),s(p1,p3),s(p1,p4) 参数图和 s 参数的史密斯圆图

由于此三通管所加激励为 5GHZ 的激励源,扫描范围为 2.0GHZ 到 7.0GHZ,因此所得图像如下图。S 参数表示的是此三通管的散射参数,对于此环形电桥激励加在端口 1 上,在激励的频率为 5GHZ 时,1端口的 s 参数为-17.054915 即此端口的反射波很少能量可以有效的传输过去,2端口的 s 参数为-3.948049 损耗较少,因此有较多的能量通过,4端口的 s 参数为-2.521436 损耗也较少,因此也有较多的能量通过,3端口的 s 参数为-17.488589 损耗较大,几乎没有能量从此端口通过。

s参数的史密斯圆图

微波 EDA 网视频培训教程推荐

微波 EDA 网(www.mweda.com)成立于 2004 年底,并于翌年与易迪拓培训合并,专注于 微波、射频和硬件工程师的培养,现已发展成为国内最大的微波射频和无线通信人才培养基地。 先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书,成功推出了多套微波射频 经典培训课程和 ADS、HFSS 等软件的使用培训课程,广受工程技术学员的好评,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

HFSS 中文视频培训课程套装

国内最全面和专业的 HFSS 培训教程套装,包含 5 套视频教程和 2 本教材,李明洋老师讲解;结合最新工程案例,视频操作演示,让 HFSS 学习不再难。购买套装更可超值赠送 3 个月免费学习答疑,让您花最少的成本,以最快的速度自学掌握HFSS…【点击浏览详情】

○ 两周学会 HFSS —— 中文视频教程

李明洋主讲,视频同步操作演示,直观易学。课程从零讲起,通过两周的课程学习,可以帮助您快速入门、自学掌握 HFSS,真正做到让 HFSS 学习不再难···【点击浏览详情】

HFSS 微波器件仿真分析实例 —— 中文视频教程

HFSS 进阶培训课程,中文视频,通过十个 HFSS 仿真设计工程应用实例,带您更深入学习 HFSS 的实际应用,掌握 HFSS 高级设置和应用技巧…【点击浏览详情】

○ HFSS 天线设计入门 —— 中文视频教程

HFSS 是天线设计的王者,该教程全面解析了天线的基础知识、HFSS 天线设计流程和详细操作设置,让 HFSS 天线设计不再难…【点击浏览详情】

PCB 天线设计和 HFSS 仿真分析实例 —— 中文视频教程

详细讲解了 PCB 天线的工作原理和设计方法、如何使用 HFSS 来设计分析 PCB 天线,以及如何借助于 Smith 圆图工作来调试天线的匹配电路,改善天线性能…【点击浏览详情】

微波射频测量仪器培训课程套装合集

搞射频微波,不会仪器操作怎么行!矢量网络分析仪、频谱仪、示波器、信号源是微波射频工程师最常用的测量仪器。该培训套装集合了直观的视频培训教程和详尽的图书教材,旨在帮助您快速熟悉和精通矢网、频谱仪、示波器等仪器的操作…【点击浏览详情】

Agilent ADS 学习培训课程套装

国内最全面和权威的 ADS 培训教程,详细讲解了 ADS 在微波射频电路、通信系统和电磁仿真设计方面的应用。课程是由具有多年 ADS 使用经验的资深专家讲解,结合工程实例,直观易学;能让您在最短的时间内学会 ADS,并把 ADS 真正应用到研发工作中去… 【点击浏览详情】

我们的课程优势:

- ※ 成立于 2004 年, 一直专注于射频工程师的培养, 行业经验丰富, 更了解您的需求
- ※ 视频课程、既能达到现场培训的效果,又能免除您舟车劳顿的辛苦,学习工作两不误
- ※ 经验丰富的一线资深专家主讲,结合实际工程案例,直观、实用、易学
- ※ 更多实用课程, 欢迎登陆我们的官方网站 http://www.mweda.com, 或者登陆我们的官方淘宝店 http://shop36920890.taobao.com/

专注于微波、射频、硬件工程师的培养

网址: http://www.mweda.com

Q Q: 625774272