淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


System Simulator >
System Component Models >
Equalizers >
   RLSE DFE Equalizer       

RLSE DFE Equalizer

 

[spacer]

RLSE DFE Netlist Format

The RLSE DFE is inserted across a differential line pair to tell transient analysis to generate an eye diagram for the equalized signal at the associated signal probe. Equalization uses the recursive least squares (RLS) algorithm (see Notes).

ARLSE_DFE:xxxx n1 n2 n3
+ Nexsys_component=rlse_dfe
+ UI=val OVERSAMPLE=1 FF_TAPS=val FB_TAPS=val LAMBDA=val
+ DECISION_HIGH=val DECISION_LOW=val DECISION_THRESHOLD=val
+ TRAINING_DATA='file_reference'
+ RIN1=val RIN2=val ROUT=val

n1 is the positive node and n2 is the negative node of the differential line pair. The entry COMPONENT=rlse_dfe identifies the component.

 


DFE/FFE Probe Parameters

Parameter

Description

Unit

Default

UI

Unit interval (symbol duration)

Second

125e-12

OVERSAMPLE

Number of samples per UI (symbol interval). NOTE: OVERSAMPLE must be left at the default of 1 in the current implementation.

None

1

FF_TAPS

Number of feed-forward taps (filter coefficients)

None

4

FB_TAPS

Number of feed-backward taps (filter coefficients)

None

2

LAMBDA

Forgetting factor for the RLS algorithm (0 <= LAMBDA <= 1)

None

0.9

DECISION_HIGH

High signal value corresponds to associated source high

Volt

1

DECISION_LOW

Low signal value corresponds to associated source low

Volt

-1

DECISION_THRESHOLD

Threshold value for decision between high and low value

Volt

Midpoint output of source

TRAINING_DATA

Name of file containing training data (1s and 0s separated by spaces)

None

None

RIN1

Input 1 impedance

Ohm

1meg

RIN2

Input 2 impedance

Ohm

1meg

ROUT

Output impedance

Ohm

0.0


 

DFE Equalizer Netlist Example

ARLSE_DFE:2 net_1 net_2 net_3
+ Nexsys_component=rlse_dfe
+ UI=125e-12 OVERSAMPLE=1 FF_TAPS=4 FB_TAPS=2 LAMBDA=0.9
+ DECISION_HIGH=1 DECISION_low=-1 DECISION_THRESHOLD=0
+ TRAINING_DATA='TrainingData.txt'
+ RIN1=1e9 RIN2=1e9 ROUT=0

Notes

A decision-feedback equalizer (DFE) is a non-linear equalizer containing a feed-forward filter and a feed-back filter. For a feed-forward equalizer, the feed-back portion is eliminated. A training signal must be provided to allow the equalizer to calculate the initial tap weights.

Here is the architecture of a DFE with N weights, where the symbol period is T.

Recursive Least Squares Algorithm

This model updates the filter coefficients of the equalizer based on the input signal and the error signal (i.e., the difference between the output of the equalizer and the actual desired output). The update is based on the recursive least square algorithm [1], [2].

Let X(n) and h(n) denote the input signal vector and the vector of the real filter coefficients respectively at time instant n. Each vector is assumed to be of length NTAPS, the combined number of feed-forward and feed-back filter taps (NTAPS = FF_TAPS + FB_TAPS). In addition, let K(n) denote the NTAPS x 1 Kalman gain vector and let P(n) denote the NTAPS x NTAPS inverse of the correlation matrix of the input signal.

The recursive least square algorithm is given by the following five steps:

1. Compute the filter output:

y(n) = tran(X(n)) * h(n-1)

2. Compute the error:

e(n) = d(n) - y(n), where d(n) is the desired output

3. Compute the NTAPS x 1 Kalman gain vector:

K(n) = [P(n-1) * X(n)]/[LAMBDA + tran(X(n)) * P(n-1) * X(n)]

4. Update the inverse of the correlation matrix:

P(n) = (1/LAMBDA) [P(n-1) - K(n) * tran(X(n)) * P(n-1)]

5. Update the coefficients of the filter:

h(n) = h(n-1) + K(n) * e(n)

The following initial conditions are always assumed:

1. P(-1) = (1/DELTA) * I, where DELTA is a small positive number and I is the NTAPS x NTAPS identity matrix,

2. e(-1) = 0

3. h(-1) = 0.

Schematic Configuration for Transient Analysis

For Transient analysis, the schematic includes the RLS equalizer, samplers to convert the real signals to symbols, and a system probe to generate the eye diagram:

 

[spacer]

The SAMPLE_RATE for both samplers is (1 / UI).

References

1. J. G. Proakis, Digital Communications, McGraw-Hill, 1989.

2. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Macmillan, 1988.

 




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com