淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


System Simulator >
System Component Models >
Equalizers >
   Recursive Least Square Equalizer (RLSE)       

Recursive Least Square Equalizer (RLSE)

 

 


Property

Description

Units

Default

Range/Type

NTAPS

The number of filter coefficients

None

4

(-Inf, Inf)/Integer

DELTA

Inverse correlation matrix initialization factor

None

0.0005

(-Inf, Inf)/Real

LAMBDA

Forgetting factor of the RLS algorithm

None

1

[0, 1]/Real

RIN1

Input1 impedance

Ohm

Inf

(0, Inf]/Real

RIN2

Input2 impedance

Ohm

Inf

(0, Inf]/Real

ROUT

Output impedance

Ohm

0

[0, Inf)/Real

Ports

Input1

The first input signal (real)

Input2

The second input signal (real)

Output

The output signal (real)


 

Notes

This model updates the filter coefficients of the equalizer based on the input signal and the error signal (i.e., the difference between the output of the equalizer and the actual desired output). The update is based on the recursive least square algorithm [1], [2].

Let X(n) and h(n) denote the input signal vector and the vector of the real filter coefficients respec­tively at time instant n. Each vector is assumed to be of length NTAPS (i.e., number
of filter taps). In addition, let K(n) denote the NTAPS x 1 Kalman gain vector and let the NTAPS x NTAPS inverse of the correlation matrix of the input signal be denoted by P(n).

The recursive least square algorithm is given by the following 5 steps:

1. Compute the filter output:

    y(n) = tran(X(n)) * h(n-1

2. Compute the error:

    e(n) = d(n) - y(n), where d(n) is the desired output

3. Compute the NTAPS x 1 Kalman gain vector:

    K(n) = [P(n-1) * X(n)]/[LAMBDA + tran(X(n)) * P(n-1) * X(n)]

4. Update the inverse of the correlation matrix:

    P(n) = (1/LAMBDA) [P(n-1) - K(n) * tran(X(n)) * P(n-1)]

5. Update the coefficients of the filter:

    h(n) = h(n-1) + K(n) * e(n)

The following initial conditions are always assumed:

P(-1) = (1/DELTA) * I, where DELTA is a small positive number and I is the NTAPS x NTAPS identity matrix, e(-1) = 0, and h(-1) = 0.

Netlist Form

RLSE:NAME n1 n2 n3 NTAPS=val DELTA=val LAMBDA=val [RIN1=val] [RIN2=val] [ROUT=val]

Netlist Example

RLSE 1 2 3 NTAPS=8 DELTA=.005 LAMBDA=0.999

References

1. J. G. Proakis, Digital Communications, McGraw-Hill, 1989.

2. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Macmillan, 1988




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com