![]() ![]() ![]() ![]() ![]() |
|
微波射频仿真设计 |
|
首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档 |
System Simulator > Recursive Least Square Equalizer (RLSE)
![]()
NotesThis model updates the filter coefficients of the equalizer based on the input signal and the error signal (i.e., the difference between the output of the equalizer and the actual desired output). The update is based on the recursive least square algorithm [1], [2]. Let X(n) and h(n) denote the input signal vector and
the vector of the real filter coefficients respectively at time
instant n. Each vector is assumed to be of length NTAPS (i.e., number
The recursive least square algorithm is given by the following 5 steps: 1. Compute the filter output: y(n) = tran(X(n)) * h(n-1 2. Compute the error: e(n) = d(n) - y(n), where d(n) is the desired output 3. Compute the NTAPS x 1 Kalman gain vector: K(n) = [P(n-1) * X(n)]/[LAMBDA + tran(X(n)) * P(n-1) * X(n)] 4. Update the inverse of the correlation matrix: P(n) = (1/LAMBDA) [P(n-1) - K(n) * tran(X(n)) * P(n-1)] 5. Update the coefficients of the filter: h(n) = h(n-1) + K(n) * e(n) The following initial conditions are always assumed: P(-1) = (1/DELTA) * I, where DELTA is a small positive number and I is the NTAPS x NTAPS identity matrix, e(-1) = 0, and h(-1) = 0. Netlist FormRLSE:NAME n1 n2 n3 NTAPS=val DELTA=val LAMBDA=val [RIN1=val] [RIN2=val] [ROUT=val] Netlist ExampleRLSE 1 2 3 NTAPS=8 DELTA=.005 LAMBDA=0.999 References1. J. G. Proakis, Digital Communications, McGraw-Hill, 1989. 2. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Macmillan, 1988 HFSS视频教程 ADS视频教程 CST视频教程 Ansoft Designer 中文教程 |
Copyright © 2006 - 2013 微波EDA网, All Rights Reserved 业务联系:mweda@163.com |