淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


System Simulator >
System Component Models >
Sources >
   One Port Oscillator (OSC)       

One Port Oscillator (OSC)

 

 


Property

Description

Units

Default

Range/Type

NSAMP

Number of samples

None

1024

(0, Inf)/Integer

SAMPLE_RATE

Output sample rate

MHz

102.4

(0, Inf)/Real

PLO

Average Power at oscillator output

Watt

0.01

[0, Inf)/Real

FLO

Center frequency

MHz

1

[0, Inf)/Real

NOISEON

Noise: 1 for On, 0 for Off

None

1

[0, 1]/Integer

DivNoiseOn

Divider noise: 1 for On, 0 for Off

None

1

[0,1]/Integer

VcoNoiseOn

Vco noise: 1 for On, 0 for Off

None

1

[0, 1]/Integer

F1

Frequency offset from FLO, region 1

Hz

0

(0, Inf)/Real

F2

Frequency offset from FLO, region 2

Hz

0

(0, Inf)/Real

M2

Phase noise magnitude at F2 (i.e. phase noise floor) in dB

dB

-180

(-Inf, 0]/Real

TYPE

0: Low loaded Q

1: High loaded Q

None

0

[0, 1]/Integer

FM1...n

Frequency offset

Hz

100

(0,Inf)/Real

SBN1...n

Sideband noise in dB at frequency offset

dB

-80

(-Inf,0)/Real

FILE

Filename for FM, SBN data

None

<Project>

String

PHASE

Output Phase Shift

Deg

0

(-Inf, Inf)/Real

SEED

Random seed used for phase noise generation

None

0

[0, Inf)/Integer

Wavetype

Output waveform type

0: Sinusoid

1: Sawtooth

None

0

[0, 1]/Integer

ROUT

Output impedance

Ohm

50

[0, Inf)/Real

Ports

Output

Output signal (complex)


 

Notes

1. All phase noise data must be provided if output is to include phase noise effects

2. In general, the output voltage of this model is given by:

where

[spacer]

for envelope analysis

or

[spacer]

for instantaneous analysis

and qn(t) is the random phase noise component at time t. This phase noise component will only be nonzero if the NOISEON parameter is set to 1, otherwise, the oscillator will be assumed noiseless.

The power spectral density of the random phase noise processes is given by the Leeson’s model [1]

where fc is the flicker noise frequency and qload is the loaded Q. The noise floor M2 is simply:


 

3. The frequency offsets F1 and F2 must be consistent with the specified oscillator TYPE as shown in the phase noise plots below. For a low qload, F1 and F2 correspond to fc and flo/2qload respectively while for a high qload, F1 and F2 correspond to flo/2qload and fc respec­tively.

4. The indexed parameters “FM” and “SBN” allow the user to specify measured noise data. When measured noise data is provided, the model will ignore the parameters QLOAD, F, R, FC.

5. The “FILE” parameter identifies a data file for the phase noise parameters FM and SBN. The filename must have a .dsp extension, and must be in DSP format:

xy
fm1 sbn1
...
fmN sbnN

 Where the first column is the frequency offset in Hz and the second column is the sideband noise in dB. For example:

xy
100 -80
1000 -90
...

 If a valid “FILE” parameter is present, the data from the file will be used and the correspond­ing “FM” and “SBN” parameters in the netlist will be ignored. Any “FM” and “SBN” parame­ters in the netlist that are not also defined in the data file will be used.

6. When the parameter “VcoNoiseOn” is set to 1, VCO noise will be simulated. Otherwise, VCO noise will not be incorporated in the simulation. The same happens to the divider noise. Note that noise simulation is expensive, so when it is not needed, the two parameters should be turned on.

7. A random phase noise process is generated by filtering a white Gaussian random sequence through a filter with a frequency response H(fm), where

This frequency response is decomposed into three regions: near-carrier region (fm £ F1), far-carrier region (F1 < fm < F2) and the White noise region (fm ³ F2). Regions one and two are represented in the frequency domain using 8192 frequency points each. Region one will typi­cally use a much smaller frequency resolution than region 2. Region 3 is simply modeled as an additive white Gaussian process. The total random phase noise process is simply the sum of the contributions from each region.

Since in general the sampling frequency of the generated phase noise process is less than the actual output sampling frequency FS, linear interpolation is applied in the time domain on the generated phase noise process qn(t) to ensure it has the same sampling rate as that of the output signal.

Netlist Form

OSC:Name n1 FLO=val PLO=val NSAMP=val SAMPLE_RATE=val

+ [PHASE=val] [F1=val] [F2=val] [FDEV=val] [M2=val] [TYPE=val]

+[DivNoiseOn=val] [VcoNoiseOn=val] [FM1..n=val] [SBN1..n=val] [FILE='filename']

+ [SEED=val] [Wavetype=val] [Rout=val]

 

Netlist Example

OSC:1 1 FLO=800MHZ PLO=10dbm NSAMP=1000 SAMPLE_RATE=1MHZ

+ PHASE=90 F1=150Hz F2=10KHz FDEV=100KHz M2=-180dB TYPE=0

References

1. Ulrich L. Rohde, J. Whitaker, and T.T.N. Bucher, “Communications Receivers” McGraw-Hill, 1996.




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com