淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


System Simulator >
System Component Models >
WCDMA Transmitter >
   M-Sequence Generator (MSEQ)       

M-Sequence Generator (MSEQ)

 

 


Property

Description

Units

Default

Range/Type

L

Length of shift register

None

5

[2, 63]/Integer

N

Period of the m-sequence

None

31

[1, Inf)/Integer

PL

Primitive polynomial (low 32 bits) in decimal

None

37

[1, Inf)/Integer

PH

Primitive polynomial (high 32 bits) in decimal

None

0

[0, Inf)/Integer

SL

Initial state of the shift register (low 32 bits) in decimal

None

1

[0, Inf)/Integer

SH

Initial state of the shift register (high 32 bits) in decimal

None

0

[0, Inf)/Integer

NC

Number of chips

None

0

[0, Inf)/Integer

RC

Chip rate of the m-sequence

Hz

1000

(0, Inf)/Real

T

True output value

None

-1

(-Inf, Inf)/Integer

F

False output value

None

1

(-Inf, Inf)/Integer

ROUT

Output impedance

Ohm

0

[0, Inf)/Real

Ports

Output

Truncated m-sequence (real)


 

Notes

1. The m-sequence Generator model can be used to generate m-sequence.

2. The m-sequence can be generated using Linear Feedback Shift Register (LFSR) with a primi­tive polynomial[2]. For a given primitive polynomial, there are two methods[2] of implement­ing LFSR, i.e, Galois feedback generator and Fibonacci feedback generator. Since m-sequence has the maximum possible period for a L-stage LFSR, it is also called maximal length sequence. The maximum period of a L-stage LFSR can be proven to be 2L-1. The structure of Linear Feedback Shift Register with Fibonacci feedback generator is shown in Fig.1. The primitive polynomials g(D) is given by

(1)

3. Table I shows a list of primitive polynomials for Linear Feedback Shift Register[2]. In the table, all polynomials are specified by an octal number that defines the coefficients of g(D). The octal number gives the coefficients of g(D) beginning with go on the right and proceeding to gL in the last nonzero position on the left. For example, a L-tage LFSR uses the entry [367]. Expanding the octal entry 367 into binary form, we obtain







Therefore,

In Table I, each entry in brackets represents one primitive polynomial as a series of octal num­bers, explained in the above example. The entries following by an asterisk correspond to cir­cuit implementation with only two feedback connections, which are very useful for high-speed applications. No reciprocal polynomial is listed in Table I. Since the reciprocal polynomial of a primitive polynomial is also primitive, each entry in this table can be used to generate two dis­tinct m-sequences.

Fig. 1 Block diagram of m-sequence Generator (Fibonacci feedback generator)

4. Note that the primitive polynomial in binary is g0g1...gL and the initial state of the shift register in binary is SL-1SL-2...S0 .

5. A list of primitive polynomials is tabulated in the following table:

Degree

Octal Representation of primitive polynomial (g0 on left to gLon right)

2

[7]*

3

[13]*

4

[23]*

5

[45]*, [75], [67]

6

[103]*, [147], [155]

7

[211]*, [217], [235], [367], [277], [325], [203]*, [313], [345]

8

[435], [551], [747], [453], [545], [537], [703], [543]

9

[1021]*, [1131], [1461], [1423], [1055], [1167], [1541],

[1333], [1605], [1751], [1743], [1617], [1553], [1157]

10

[2011]*, [2415], [3771], [2157], [3515], [2773], [2033],

[2443], [2461], [3023], [3543], [2745], [2431], [3177]

11

[4055]*, [4445], [4215], [4055], [6015], [7413], [4143],

[4563], [4053], [5023], [5623], [4577], [6233], [6673]

12

[10123], [15647], [16533], [16047], [11015], [14127],

[17673], [13565], [15341], [15053], [15621], [15321],

[11417], [13505]

13

[20033], [23261], [24623], [23517], [30741], [21643],

[30171], [21277], [27777], [35051], [34723], [34047],

[32535], [31425]

14

[42103], [43333], [51761], [40503], [77141], [62677],

[44103], [45145], [76303], [64457], [57231], [64167],

[60153], [55753]

15

[100003]*, [102043], [110013], [102067], [104307], [100317],

[177775], [103451], [110075], [102061], [114725], [103251],

[100021]*, [100201]*

16

[210013], [234313], [233303], [307107], [307527], [306357],

[201735], [272201], [242413], [270155], [302157], [210205],

[305667], [236107]

17

[400011]*, [400017], [400431], [525251], [410117], [400731],

[411335], [444257], [600013], [403555], [525327], [411077],

[400041]*, [400101]*

18

[1000201]*, [1000247], [1002241], [1002441], [1100045],

[1000407], [1003011], [1020121], [1101005], [1000077],

[1001361], [1001567], [1001727], [1002777]

19

[2000047], [2000641], [2001441], [2000107], [2000077],

[2000157], [2000175], [2000257], [2000677], [2000737],

[2001557], [2001637], [2005775], [2006677]

20

[4000011]*, [4001051], [4004515], [6006031], [4442235]

21

[10000005]*, [10040205], [10020045], [10040315], [10000635],

[10103075], [10050335], [10002135], [17000075]

 

Netlist Form

MSEQ:NAME n1 L=val [N =val] [PL=val] [PH =val] [SL=val] [SH =val] NC=val [RC=val] + [T=val] [F =val] [ROUT=val]

Netlist Example

MSEQ:1 1 L = 5 N=31 PL = 41 PH = 0 SL = 31 SH = 0 NC = 124 RC = 1khz T= 1 F= 0

References

1. J. G. Proakis, Digital Communications, McGraw-Hill, 2001.

2. R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread Spectrum Communica­tions. Prentice Hall International Editions, 1995.




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com