淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


System Simulator >
System Component Models >
IEEE802dot11a >
   Modulator, 802.11a (MOD11A)       

Modulator, 802.11a (MOD11A)

 

 


Property

Description

Units

Default

Range/Type

MODULATION

Modulation Type

None

0

[0, 3]/Integer

RIN

Input impedance

Ohm

Inf

(0, Inf]/Real

ROUT

Output impedance

Ohm

0

[0, Inf)/Real

Ports

Input

Bits before modulation (integer)

Output

Modulated signal (complex)


 

Limits

 

Notes

1. This model can be used for modulation according to Gray-coded constellation mappings[1].

2. The OFDM subcarriers can be modulated by using BPSK, QPSK, 16-QAM, or 64-QAM mod­ulation, depending on the RATE requested. The encoded and interleaved binary serial input data shall be divided into groups of NBPSC (1, 2, 4, or 6) bits and converted into complex num­bers representing BPSK, QPSK, 16-QAM, or 64-QAM constellation points. The conversion shall be performed according to Gray-coded constellation mappings[1]. The output values, d, are formed by multiplying the resulting I + jQ value by a normalization factor KMOD, as described in Eqn.(1).

(1)
The normalization factor,KMOD, depends on the base modulation mode, as prescribed in Table I. Note that the modulation type can be different from the start to the end of the transmission, as the signal changes from SIGNAL to DATA, as shown in Fig.1. The purpose of the normal­ization factor is to achieve the same average power for all mappings. In practical implementa­tions, an approximate value of the normalization factor can be used, as long as the device conforms with the modulation accuracy requirements described in [1].

For BPSK, b0 determines the I value, as illustrated in Table II. For QPSK, b0 determines the I value and b1 determines the Q value, as illustrated in Table III. For 16-QAM, b0b1 determines the I value and b2b3 determines the Q value, as illustrated in Table IV. For 64-QAM, b0b1b2 determines the I value and b2b3b4 determines the Q value, as illustrated in Table V. The input bit, b0, is the earliest in the stream.

Fig.1 PPDU frame format

 Table I IEEE 802.11a Modulation-dependent normalization factor KMOD

Modulation

(KMOD)

 

BPSK

 

1

 

QPSK

 

 

 

16-QAM

 

 

 

64-QAM

 

 

Table II IEEE 802.11a BPSK encoding table

Input bit (b0)

I-out

Q-out

0

-1

0

1

1

0

Table III IEEE 802.11a QPSK encoding table

Input bit (b0)

I-out

 

Input bit (b1)

Q-out

0

-1

 

0

-1

1

1

 

1

1

Table IV IEEE 802.11a 16-QAM encoding table

Input bits (b0b1)

I-out

 

Input bits (b2b3)

Q-out

00

-3

 

00

-3

01

-1

 

01

-1

11

1

 

11

1

10

3

 

10

3

Table V IEEE 802.11a 64-QAM encoding table

Input bits (b0b1b2)

I-out

 

Input bits (b3b4b5)

Q-out

000

-7

 

000

-7

001

-5

 

001

-5

011

-3

 

011

-3

010

-1

 

010

-1

110

1

 

110

1

111

3

 

111

3

101

5

 

101

5

100

7

 

100

7

 

Netlist Form

MOD11A:NAME n1 n2 [MODULATION =val] [RIN=val] [ROUT=val]

Netlist Example

MOD11A:1 1 2 MODULATION = 2

References

1. IEEE Std 802.11a, Part 11: “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band,” ISO/IEC 8802-11:1999/Amd 1:2000(E).

2. J. Terry and J. Heiskala, Proakis, OFDM Wireless LANs: A Theoretical and Practical Guide, Sams Publishing, 2002.




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com