淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


System Simulator >
System Component Models >
Modulators >
   Gaussian Minimum Shift Keying Modulator (GMSK)       

Gaussian Minimum Shift Keying Modulator (GMSK)

 

 


Property

Description

Units

Default

Range

NB

Number of bits per symbol

None

1

(0, 8]/Integer

MOD_INDEX

Modulation index of GMSK modulator

None

0.5

(0, 1]/Integer

NUM_SAMPLES

Number of samples per symbol

None

8

(0, Inf]/Integer

RESPONSE_LENGTH

Length of Gaussian filter impulse response in symbols

None

4

(0, Inf]/Real

NORMALIZED_BW

Normalized bandwidth of Gaussian filter

Hz

0.3

(0, 1]/Integer

RIN

Input impedance

Ohm

Inf

(0, Inf]

ROUT1

Output impedance

Ohm

0

[0, Inf)

ROUT2

Output impedance

Ohm

0

[0, Inf)

Ports

Input

Input symbols in the range 0, 1, ...., M - 1, where M = 2NB (real)

Output1

in-phase output of GMSK modulator (real)

Output2

Quadrature output of GMSK modulator (real)


 

Notes

1. This model modulates a sequence of input symbols that have values in the range 0 to M – 1 , where M = 2NB.

The input to this model must be the symbol values Ai, where 0 £ Ai £ M ­1, and M = 2NB.
Each Ai input symbol value is then internally converted to the symbol value Ki, where
Ki = 2 * (Ai + 1) – M. This implies that the values Ki may assume are
– (M – 1), ...., –5, –3, –1, +1, +3, +5, ....., +(M – 1).

For example, when NB = 1 (i.e., each symbol is represented by one bit as in the binary case), the values Ki may assume would be -1 and +1 only.

Each Ki symbol value (representing NB bits) is then upsampled by NUM_SAMPLES by add­ing NUM_SAMPLES - 1 zeros after each Ki symbol value. In other words, NUM_SAMPLES represents the number of samples per symbol inside the GMSK modulator. Upsampling is performed because this model involves a Gaussian filtering process to fre­quency modulate the carrier.

The n-th sample of the in-phase and quadrature outputs of the GMSK modulator is given by cos(theta(n)) and sin(theta(n)) respectively, where

theta(n) = 2 * PI * MODULATION_INDEX * SUM_1(Ki * q[n - i]) +
PI * MODULATION_INDEX * SUM_2(Ki)
where the limits of SUM_1 are from i = n - RESPONSE_LENGTH + 1 to n, and
the limits of SUM_2 are from i = 0 to n - RESPONSE_LENGTH.

The filter coefficients q[i], 0 £ i £ RESPONSE_LENGTH * NUM_SAMPLES - 1, are determined from integrating a Gaussian filter's impulse response [1]. The duration of this impulse response (in samples) is RESPONSE_LENGTH * NUM_SAMPLES.

The frequency response of the Gaussian filter is determined by the normalized bandwidth (NORMALIZED_BW) which is given by B * T, where B is the 3dB-bandwidth of the
Gaussian filter and T is the symbol duration. For example, the bit rate in the GSM system
(NB = 1) is 3.69 mS, therefore, a normalized bandwidth of NORMALIZED_BW = 0.3 (used by the GSM system) should correspond to a Gaussian filter's 3dB-bandwidth of 81.25 KHz.

Netlist Form

GMSK:Name n1 n2 n3 NB=val MODULATION_INDEX=val NUM_SAMPLES=val + RESPONSE_LENGTH=val NORMALIZED_BW=val [Rin=Val] [Rout=Val]

Netlist Examples

1. Example 1:

GMSK:1 1 2 3 NB=1 MODULATION_INDEX=0.5 NUM_SAMPLES=2

+ RESPONSE_LENGTH=3 NORMALIZED_BW=0.3

The parameters in this example correspond to those used by the GSM system. A typical input sequence and the corresponding output sequence are shown in the following table:


Input
to
GMSK

Modified
unsampled
Input

in-phase
Output

Quadrature
Output

1

+1.000

1.000

0.009

 

0.000

0.994

0.111

0

-1.000

0.884

0.468

 

0.000

0.563

0.826

0

-1.000

0.571

0.821

 

0.000

0.930

0.368

.

.

.

.

 

.

.

.

.

.

.

.

 

.

.

.


 

2. Example 2:

GMSK 1 2 3 NB=2 MODULATION_INDEX=0.5 NUM_SAMPLES=3 + RESPONSE_LENGTH=4 NORMALIZED_BW= 0.25


Input to GMSK

Modified unsampled Input

in-phase Output

Quadrature Output

2

+1.000

1.000

0.001

 

0.000

1.000

0.008

 

0.000

0.999

0.039

1

-1.000

0.992

0.126

 

0.000

0.952

0.305

 

0.000

0.839

0.544

1

-1.000

0.676

0.737

 

0.000

0.600

0.800

 

0.000

0.703

0.711

2

+1.000

0.901

0.434

 

0.000

1.000

0.000

 

0.000

0.901

-0.434

2

+1.000

0.703

-0.711

 

0.000

0.606

-0.796

 

0.000

0.703

-0.711

3

+3.000

0.903

-0.438

 

0.000

0.999

0.034

 

0.000

0.823

0.568

3

+3.000

0.260

0.966

 

0.000

-0.610

0.793

 

0.000

-0.966

-0.259

0

-3.000

0.074

-0.997

 

0.000

1.000

-0.029

 

0.000

0.222

0.975

.

.

.

.

 

.

.

.

 

.

.

.

.

.

.

.


 

References

1. Raymond Steele, Mobile Radio Communications, Pentech Press, 1992.




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com