淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


System Simulator >
System Component Models >
Equalizers >
   Recursive Least Square Equalizer, Complex (CRLSE)       

Recursive Least Square Equalizer, Complex (CRLSE)

 

 


Property

Description

Units

Default

Range/Type

NTAPS

The number of filter coefficients

None

4

(-Inf, Inf)/Integer

DELTA

Inverse correlation matrix initialization factor

None

0.0005

(-Inf, Inf)/Real

LAMBDA

Forgetting factor of the RLS algorithm

None

1

[0, 1]/Real

RIN1

Input1 impedance

Ohm

Inf

(0, Inf]/Real

RIN2

Input2 impedance

Ohm

Inf

(0, Inf]/Real

RIN3

Input3 impedance

Ohm

Inf

(0, Inf]/Real

RIN4

Input4 impedance

Ohm

Inf

(0, Inf]/Real

ROUT1

Output1 impedance

Ohm

0

[0, Inf)/Real

ROUT2

Output2 impedance

Ohm

0

[0, Inf)/Real

Ports

Input1

Real part of the complex input signal (real)

Input2

Imaginary part of the complex input signal (real)

Input3

Real part of the error signal (real)

Input4

Imaginary part of the error signal (real)

Output1

Real part of the complex output signal (real)

Output2

Imaginary part of the complex output signal (real)


 

Notes

This model updates the filter coefficients of the equalizer based on the complex input and error sig­nals (i.e., the difference between the output of the equalizer and the actual desired output). The update is based on the recursive least square algorithm [1], [2].

Let X(n) and h(n) denote the input signal vector and the vector of the complex filter coefficients respectively at time instant n. Each vector is assumed to be of length NTAPS (i.e., number of filter taps). In addition, let K(n) denote the NTAPS x 1 complex Kalman gain vector and let the NTAPS x NTAPS inverse of the complex correlation matrix of the input signal be denoted by P(n).

The recursive least square algorithm is given by the following 5 steps:

1. Compute the filter output:

    y(n) = trans(X(n)) * h(n-1)

2. Compute the error:

    e(n) = d(n) - y(n), where d(n) is the desired output

3. Compute the NTAPS x 1 Kalaman gain vector:

    K(n) = [P(n-1) * conj(X(n))] / [LAMBDA + trans(X(n)) * P(n-1) * conj(X(n))]

4. Update the inverse of the complex correlation matrix:

    P(n) = (1/LAMBDA) [P(n-1) - K(n) * trans(X(n)) * P(n-1)]

5. Update the coefficients of the complex filter:

    h(n) = h(n-1) + K(n) * e(n)

The following initial conditions are always assumed:

P(-1) = (1/DELTA) * I, where DELTA is a small positive number and I is the NTAPS x NTAPS identity matrix. e(-1) = 0, and h(-1) = 0.

Netlist Form

CRLSE:NAME n1 n2 n3 n4 n5 n6 NTAPS=val DELTA=val LAMBDA=val [RIN1=val] [RIN2=val] [RIN3=val] [RIN4=val] [ROUT1=val] [ROUT2=val]

Netlist Example

CRLSE:1 1 2 3 4 5 6 NTAPS=6 DELTA=.005 LAMBDA=.999

References

1. J. G. Proakis, Digital Communications, McGraw-Hill, 1989.

2. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Macmillan, 1988.




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com